Epigenetic signature for attention-deficit/hyperactivity disorder

Attention-deficit/hyperactivity disorder (ADHD) is considered a complex disorder caused by underlying genetic and environmental risk factors. To make it even more complex, environmental factors can influence the expression of genes. This is called epigenetics.

Given the large proportion of the heritability of ADHD still to be explained, there is a growing interest in the epigenetic mechanisms that modulate gene expression. microRNAs (miRNA) are small parts in the human genome that do not code for genes, but instead regulate the expression of other genes by promoting the degradation or suppressing the translation of those target genes. miRNA therefore provide a means to integrate effects of genetic and environmental risk factors.

The human genome encodes more than 2500 different miRNAs, the majority of which are expressed in the brain. miRNAs are known to be involved in the development of the central nervous system and in many neurological processes including synaptic plasticity and synaptogenesis. Given the limited accessibility of the human brain for studying epigenetic modifications, miRNA profiling in peripheral blood cells is often used as a non-invasive proxy to study transcriptional and epigenetic biosignatures, and to identify potential clinical biomarkers for psychiatric disorders.

We recently investigated the role of microRNAs in ADHD at a molecular level, by conducting the first genome-wide integrative study of microRNA and gene expression profiles in blood of individuals with ADHD and healthy controls. We identified three miRNAs (miR-26b-5p, miR-185-5p and miR-191-5p) that have different expression levels in people with ADHD, compared to those without ADHD. When we investigated downstream miRNA-mediated mechanisms underlying the disorder this provided evidence that aberrant expression profile of these three miRNA may underlie changes in the expression of genes related with myo-inositol signaling. This mediates the biological response of a large number of hormones and neurotransmitters on target cells. We also found that these miRNAs specifically targeted genes involved in neurological disease and psychological disorders.

These findings show that epigenetic modifications through microRNAs play a role in ADHD, and provide novel insights into how these miRNA-mediated mechanisms contribute to the disorder. In the future, these miRNAs may be used as peripheral biomarkers that can be easily detected from blood, as is shown in the figure.

What´s next?

The mechanism through which miRNAs modify gene expression is complex and dynamic. Therefore, future studies are required to provide deeper insights into the epigenetic mechanisms underlying ADHD, and to identify specific molecular networks that may be crucial in the development of the disorder.

Further reading

Cristina Sánchez-Mora et al. Epigenetic signature for attention-deficit/hyperactivity disorder: identification of miR-26b-5p, miR-185-5p, and miR-191-5p as potential biomarkers in peripheral blood mononuclear cells, Neuropsychopharmacology, volume 44, pages 890–897 (2019).

https://www.nature.com/articles/s41386-018-0297-0

About the author

Cristina Sánchez-Mora is postdoctoral researcher at the Psychiatry, Mental Health and Addictions group at Vall d’Hebron Institut de Recerca (VHIR). Her research is part of the CoCA consortium that investigates comorbid conditions of ADHD