What do rewards have to do with mental health problems?

Photo by Jacqueline Munguía

What do you think of when I say “rewards”? Perhaps you think of the points you collect every time you shop or the badges you get when playing a videogame. Well, then you’re right!  A reward can be anything. A good grade, going on a trip with friends, a smile, and even that dessert you crave in the middle of the night. Rewards are any stimuli with the potential to make us seek and consume them, and if we like, we will probably want to get them again [1].

Actually, you crave that dessert because you ate it once, and you liked it so much that your brain learned that eating that dessert again will make you feel good. This happens because of a neurotransmitter called “dopamine” released when you eat the dessert, giving you that little rush of pleasure. Now your brain knows what you like and will want more of that.

By now, you probably have realized that rewards are present in virtually everything we do in our daily lives. That is why seeking and consuming rewards are considered to be a fundamental characteristic of human behavior. These rewards that we keep consuming guarantee that we stay alive by eating and drinking water, for example. Rewards also have a huge influence on how we experience positive emotions, motivate ourselves to perform tasks, and learn new things [2].

What about the relationship between rewards and mental health problems?

Although rewards are natural stimuli that make us keep doing healthy and nurturing things, it can also become a problem. Rewards are not the problem itself, but some people can have an unhealthy behavior towards rewards. That’s where mental health problems come in. Did you know that most mental health conditions have alterations in how rewards are processed in the brain? It’s so common that these so-called reward processing alterations are now considered a “transdiagnostic feature,” meaning we can find them across different mental health conditions [3].

Reward processing is a term to refer to all aspects related to how we approach and consume rewards. For instance, how you respond after getting a reward (responsiveness), how motivated you are to go after a reward (drive/motivation), how impulsive you are when trying to get new and intense rewards (fun-seeking/impulsivity). So, as you can see, it’s not only about getting the rewards, but many different things play a role in a simple action we do.

Let’s think of an example: You are going to a party with your best friends. You are motivated to go out with your friends because you’re always happy when you are around them [this is the drive/motivation]. Once you are at the party, you meet your friends, talk, laugh and are happy you decided to join because you’re feeling that rush of pleasure [this is the responsiveness aspect]. At some parties, things can get a bit out of control, and some people might do risky things on the spur of the moment, like binge drinking. You refuse to binge drink because you thought of the risks, and you don’t want to be in trouble later [that’s the third aspect, the fun-seeking/impulsivity].

Now, let’s think of how that party would be for people with reward processing alterations. In the case of a very high drive, they would be super motivated to hang out with friends. On the other hand, if they have low responsiveness, they wouldn’t be able to have fun at the party even though all of their friends are there and the party is super fun. Lastly, in the case of high fun-seeking/impulsivity, they wouldn’t think of the risks and consequences and engage in binge drinking anyways.

As I mentioned before, these alterations play a role in different mental health conditions. They can affect one or more aspects of reward processing, and they can be either lower or higher than average. For example, people with ADHD can show higher risk-taking, meaning that they are more susceptible to take big risks without thinking about the consequences [4]. This impulsive behavior might be a reflection of the altered fun-seeking aspect of reward processing. Another example is the lack of interest in social interactions in people with autism spectrum disorders [5]. This lack of interest might reflect a reduced drive/motivation to go after social rewards.

These are just some examples of what reward processing alterations might look like in the context of mental health problems. There are still a lot of open questions. As part of my PhD research, I am trying to answer some of them. For example, which came first? Are reward processing alterations causing mental health problems, or are they just mere symptoms of these conditions? If you want to learn more about this topic, stay tuned as more blog posts will come!

Dener Cardoso Melo is a PhD candidate at the University Medical Center Groningen (UMCG). He is using data from the CoCA project together with other datasets to investigate the potential causal role of reward processing alterations in different mental health conditions.


  1. Schultz, W. (2015). Neuronal reward and decision signals: From theories to data. Physiological Reviews, 95(3), 853-951. doi:10.1152/physrev.00023.2014
  2. Wise, R. A. (2002). Brain reward circuitry: Insights from unsensed incentives. United States: Elsevier Inc. doi:10.1016/S0896-6273(02)00965-0
  3. Zald, D. H., & Treadway, M. T. (2017). Reward processing, neuroeconomics, and psychopathology. Annual Review of Clinical Psychology, 13(1), 471-495. doi:10.1146/annurev-clinpsy-032816-044957
  4. Luman, M., Tripp, G., & Scheres, A. (2010). Identifying the neurobiology of altered reinforcement sensitivity in ADHD: A review and research agenda. Neuroscience and Biobehavioral Reviews, 34(5), 744-754. doi:10.1016/j.neubiorev.2009.11.021
  5. Stavropoulos, K. K., & Carver, L. J. (2018). Oscillatory rhythm of reward: Anticipation and processing of rewards in children with and without autism. Molecular Autism, 9(1), 4. doi:10.1186/s13229-018-0189-5

“No I do not have ADHD, I am just busy!”, but still very interesting for genetic studies!

Do you sometimes find it difficult to pay attention? Can you be very disorganized at times, or very rigid and inflexible? Although difficulties with attention, organization and rigidity are symptoms of psychiatric disorders, these traits are not unique to people with a diagnosis. And that is very useful for studying the genetics of psychiatric disorders.

Being easily distracted, liking things to go in a certain way, having a certain order in the way you do things, these might all be things you recognize yourself (or someone you know) in, while you (or they) are not diagnosed with any psychiatric disorder. We actually know that many of these symptoms are indeed found in a range in the general population, with some people showing them a lot, some a little and some not at all. If these symptoms are also present in people without a diagnosis then why should we only study people with a diagnosis to learn more about the biology of symptom-based disorders?

Many psychiatric disorders, like attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are disorders that ‘run in the family’. Using family-based and genetic studies it was found that they are actually highly heritable. However the underlying genetic risk factors turned out to be difficult to find. Enormous samples sizes (comparing more than 20 000 people with the disorder to even more individuals without the disorder) were needed to robustly find just a few genetic risk factors, although we know that many more genetic factors contribute. Even though these disorders are highly prevalent, collecting genetic data on psychiatric patients for research is still challenging. Using population-based samples – that include all varieties of people from the general population – can be a good alternative to reach large sample sizes for powerful genetic studies.

Taking together the fact that psychiatric-like symptoms are also, to a certain degree, present in the general population, and the fact that genetic studies can benefit from large(r) sample sizes to find genetic associations, it can be very interesting to study psychiatric-like traits in population-based samples. This is indeed what happened in the field of psychiatric genetics. The first proof-of-concept studies were able to show an astonishing overlap in genetic factors of more than 90% between ADHD and ADHD symptoms in the general population. Our own research group was able to show that certain autistic traits, like rigidity, indeed share a genetic overlap with ASD and that genes that were previously linked to ASD show an association to autistic traits in the population. These results show that genetic factors involved in disorder-like traits are overlapping with genetic factors involved in the clinical diagnosis, and therefore can indeed be used to study the biology of psychiatric disorders.

So next time you feel distracted/rigid/disorganized, don’t get discouraged, but consider signing up for a genetic study. Science might need you!

Janita Bralten is a postdoctoral researcher at the department of Human Genetics in the Radboud university medical center, Nijmegen, the Netherlands. Her research focusses on the genetics of psychiatric disorders.

Further reading:

Bralten J, van Hulzen KJ, Martens MB, Galesloot TE, Arias Vasquez A, Kiemeney LA, Buitelaar JK, Muntjewerff JW, Franke B, Poelmans G. Autism spectrum disorders and autistic traits share genetics and biology. Mol Psychiatry. 2018 May;23(5):1205-1212.

Middeldorp CM, Hammerschlag AR, Ouwens KG, Groen-Blokhuis MM, Pourcain BS, Greven CU, Pappa I, Tiesler CMT, Ang W, Nolte IM, Vilor-Tejedor N, Bacelis J, Ebejer JL, Zhao H, Davies GE, Ehli EA, Evans DM, Fedko IO, Guxens M, Hottenga JJ, Hudziak JJ, Jugessur A, Kemp JP, Krapohl E, Martin NG, Murcia M, Myhre R, Ormel J, Ring SM, Standl M, Stergiakouli E, Stoltenberg C, Thiering E, Timpson NJ, Trzaskowski M, van der Most PJ, Wang C; EArly Genetics and Lifecourse Epidemiology (EAGLE) Consortium; Psychiatric Genomics Consortium ADHD Working Group, Nyholt DR, Medland SE, Neale B, Jacobsson B, Sunyer J, Hartman CA, Whitehouse AJO, Pennell CE, Heinrich J, Plomin R, Smith GD, Tiemeier H, Posthuma D, Boomsma DI. A Genome-Wide Association Meta-Analysis of Attention-Deficit/Hyperactivity Disorder Symptoms in Population-Based Pediatric Cohorts. J Am Acad Child Adolesc Psychiatry. 2016 Oct;55(10):896-905.

If you are interested in joining a scientific study see for example:



https://www.impactadhdgenomics.com/patienten/nl/deelnemen (Dutch only)