After the first project on subcortical brain volumes in ADHD, published in Lancet Psychiatry in 2017 , ENIGMA-ADHD now analysed cortical data of 2246 people with a diagnosis of ADHD and 1713 people without, aged between four and 63 years old. The data came from 37 research groups from around the world. FreeSurfer (imaging software) parcellations of thickness and surface area of 34 cortical regions were compared between cases and controls in 3 separate age groups; children, adolescents and adults.
Subtle differences only in the group of children were found. The childhood effects were most prominent and widespread for the surface area of the cortex. More focal changes were found for thickness of the cortex. All differences were subtle and detected only at a group level, and thus these brain images cannot be used to diagnose ADHD or guide its treatment.
These subtle differences in the brain’s cortex were not limited to people with the clinical diagnosis of ADHD: they were also present – in a less marked form – in youth with some ADHD symptoms. This second finding results from a collaboration between the ENIGMA-ADHD Working Group and the Generation-R study from Rotterdam, which has brain images on 2700 children aged 9-11 years from the general population. The researchers found more symptoms of inattention to be associated with a decrease in cortical surface area. In a third study, using the NeuroImage data from Nijmegen and Amsterdam, familial effects on those regions that showed case-control differences were investigated. Siblings of those with ADHD showed changes to their cortical surface area that resembled their affected sibling. This suggests that familial factors such as genetics or shared environment may play a role in brain cortical characteristics.
‘We identified cortical differences that are consistently associated with ADHD combining data from many different research groups internationally. We find that the differences extend beyond narrowly-defined clinical diagnoses and are seen, in a less marked manner, in those with some ADHD symptoms and in unaffected siblings of people with ADHD. This finding supports the idea that the symptoms underlying ADHD may be a continuous trait in the population, which has already been reported by other behavioural and genetic studies.’ In the future, the ADHD Working Group, which is led by Martine Hoogman and Barbara Franke from the Radboudumc in Nijmegen, hopes to look at additional key features in the brain- such as the structural connections between brain areas – and to increase the representation of adults affected by ADHD, in whom limited research has been performed to date.
Link to the article: Hoogman et al., Brain Imaging of the Cortex in ADHD: A Coordinated Analysis of Large-Scale Clinical and Population-Based Samples
To learn more about other projects that are carried out using ENIGMA-ADHD data, please also read the paper by Yanli Zhang-James and colleagues on bioRxiv. Here, the ENIGMA-ADHD data of the first and the second project were used to do prediction modelling.
The ADHD Working Group is one of over 50 working groups of the ENIGMA Consortium, in which international researchers pull together to understand the brain alterations associated with different disorders and the role of genetic and environmental factors in those alterations. For more information about ENIGMA-ADHD please visit our website http://enigma.usc.edu/ongoing/enigma-adhd-working-group/ or contact Martine Hoogman martine.hoogman (at) radboudumc.nl
One thought on “The cortex and ADHD: the second project of the ENIGMA-ADHD collaboration.”