Can virtual reality help in the treatment of ADHD?

Virtual-reality (VR) can be defined as an interactive computer-generated experience that can be similar to the real world or fantastical1. For instance, in a VR environment, a person is able to virtually live in the artificial world by looking and moving around it, as well as interacting with virtual characters or items2. Nowadays there are different kinds of VR environments, mainly used for entertainment purposes (e.g. video-games) or professional training (e.g. aviation, military training etc.)3. VR tools usually  range from a headset  (head-mounted displays with a small screens in front of the eyes), to proper full-scale rooms with bigger screens and special equipment  to increase the augmented reality experience.

Virtual reality head-mounted display. Image by Gerd Altmann from Pixabay.

VR has been recently investigated as a potential treatment for different metal health problems or psychiatric disorders such as social anxiety4, specific phobias5, post-traumatic stress disorder (PTSD)6, or persecutory delusions7. The key assumption behind the use of VR tools in mental health practice, relies in the fact that, in VR settings, individuals can repeatedly experience and learn appropriate coping strategies in a controlled environment8,9. For instance, knowing that the exposure is not real, allows people to face difficult situations and learn therapeutic strategies which they can then adopt in the real world.

..but how those VR tools can be used for the treatment of ADHD?

Recent evidence shows that VR can help enhance some of the core therapeutic challenges of ADHD such as attention, problem solving and managing impulsive behaviours10. For example, using VR can create virtual scenarios that can reward and empower skills such as response inhibition and emotional control10. One of the most commonly used scenarios is the class-room environment, which can introduce life-like distractions to asses children’s behaviour in an ecologically-based setting 10-11. In this virtual environment children with ADHD may be more able to use the trial-and-error instructional strategies to train learning skills11. For instance, in these VR settings, children with ADHD can also learn strategies to use in the real world without experiencing failures due to their experiences at school, making them more willing to accept the private feedback of the VR teacher.

Although VR ca be potentially used in ADHD treatment, is still an experimental procedure that needs more research to assess its validity. Also, there are still some concerns regarding potential side effects of long-term VR exposure, such as headaches, seizures, nausea, fatigue, drowsiness, disorientation, apathy, and dizziness10. Overall, despite its therapeutic potential, more studies are needed to assess its long-term treatment efficacy as well as the efficacy of VR environments compared to other non-pharmacological treatments already available for ADHD.

Isabella Vainieri and Jonna Kuntsi

Isabella Vainieri is a PhD student at the Social, Genetic & Developmental Psychiatry Centre at King’s College London.

Jonna Kuntsi is Professor of Developmental Disorders and Neuropsychiatry at King’s College London.

References

  1. Burdea, Grigore C. and Philippe Coiffet. Virtual Reality Technology. John Wiley & Sons, 2017.
  2. Rizzo AA, Buckwalter JG, Neumann U. Virtual reality and cognitive rehabilitation: a brief review of the future. J Head Trauma Rehabil. 1997;12:1–15.
  3. Johnson D. Virtual environments in army aviation training; Proceedings of the 8th Annual Training Technology Technical Group Meeting; Mountain View (CA), USA. 1994.
  4. . Maples-Keller JL, Bunnell BE, Kim SJ, Rothbaum BO. The Use of Virtual Reality Technology in the Treatment of Anxiety and Other Psychiatric Disorders. Harv Rev Psychiatry. 2017;25(3):103–113.
  5. Roy S, Kavitha R. Virtual Reality Treatments for Specific Phobias: A Review. Orient.J. Comp. Sci. and Technol;10(1).
  6. Rizzo A’, Shilling R. Clinical Virtual Reality tools to advance the prevention, assessment, and treatment of PTSD. Eur J Psychotraumatol. 2017;8(sup5):1414560. Published 2017 Jan 16. doi:10.1080/20008198.2017.1414560
  7. Freeman, D., Bradley, J., Antley, A., Bourke, E., DeWeever, N., Evans, N., Černis, E., Sheaves, B., Waite, F., Dunn, G., Slater, M., & Clark, D. (2016). Virtual reality in the treatment of persecutory delusions. British Journal of Psychiatry, 209, 62-67.
  8. Sanchez-Vives M, Slater M. From presence to consciousness through virtual reality. Nat Rev Neurosci 2005; 6: 332–9
  9. Slater M, Rovira A, Southern R, Swapp D, Zhang J, Campbell C, et al. Bystander responses to a violent incident in an immersive virtual environment. PLoS One 2013; 8: e52766.
  10. Bashiri A, Ghazisaeedi M, Shahmoradi L. The opportunities of virtual reality in the rehabilitation of children with attention deficit hyperactivity disorder: a literature review. Korean J Pediatr. 2017;60(11):337–343.
  11. Bioulac S, Lallemand S, Rizzo A, Philip P, Fabrigoule C, Bouvard MP. Impact of time on task on ADHD patient’s performances in a virtual classroom. Eur J Paediatr Neurol. 2012;16:514–521

Epigenetic signature for attention-deficit/hyperactivity disorder

Attention-deficit/hyperactivity disorder (ADHD) is considered a complex disorder caused by underlying genetic and environmental risk factors. To make it even more complex, environmental factors can influence the expression of genes. This is called epigenetics.

Given the large proportion of the heritability of ADHD still to be explained, there is a growing interest in the epigenetic mechanisms that modulate gene expression. microRNAs (miRNA) are small parts in the human genome that do not code for genes, but instead regulate the expression of other genes by promoting the degradation or suppressing the translation of those target genes. miRNA therefore provide a means to integrate effects of genetic and environmental risk factors.

The human genome encodes more than 2500 different miRNAs, the majority of which are expressed in the brain. miRNAs are known to be involved in the development of the central nervous system and in many neurological processes including synaptic plasticity and synaptogenesis. Given the limited accessibility of the human brain for studying epigenetic modifications, miRNA profiling in peripheral blood cells is often used as a non-invasive proxy to study transcriptional and epigenetic biosignatures, and to identify potential clinical biomarkers for psychiatric disorders.

We recently investigated the role of microRNAs in ADHD at a molecular level, by conducting the first genome-wide integrative study of microRNA and gene expression profiles in blood of individuals with ADHD and healthy controls. We identified three miRNAs (miR-26b-5p, miR-185-5p and miR-191-5p) that have different expression levels in people with ADHD, compared to those without ADHD. When we investigated downstream miRNA-mediated mechanisms underlying the disorder this provided evidence that aberrant expression profile of these three miRNA may underlie changes in the expression of genes related with myo-inositol signaling. This mediates the biological response of a large number of hormones and neurotransmitters on target cells. We also found that these miRNAs specifically targeted genes involved in neurological disease and psychological disorders.

These findings show that epigenetic modifications through microRNAs play a role in ADHD, and provide novel insights into how these miRNA-mediated mechanisms contribute to the disorder. In the future, these miRNAs may be used as peripheral biomarkers that can be easily detected from blood, as is shown in the figure.

What´s next?

The mechanism through which miRNAs modify gene expression is complex and dynamic. Therefore, future studies are required to provide deeper insights into the epigenetic mechanisms underlying ADHD, and to identify specific molecular networks that may be crucial in the development of the disorder.

Further reading

Cristina Sánchez-Mora et al. Epigenetic signature for attention-deficit/hyperactivity disorder: identification of miR-26b-5p, miR-185-5p, and miR-191-5p as potential biomarkers in peripheral blood mononuclear cells, Neuropsychopharmacology, volume 44, pages 890–897 (2019).

https://www.nature.com/articles/s41386-018-0297-0

About the author

Cristina Sánchez-Mora is postdoctoral researcher at the Psychiatry, Mental Health and Addictions group at Vall d’Hebron Institut de Recerca (VHIR). Her research is part of the CoCA consortium that investigates comorbid conditions of ADHD