The cortex and ADHD: the second project of the ENIGMA-ADHD collaboration.

After the first project on subcortical brain volumes in ADHD, published in Lancet Psychiatry in 2017 , ENIGMA-ADHD now analysed cortical data of 2246 people with a diagnosis of ADHD and 1713 people without, aged between four and 63 years old.  The data came from 37 research groups from around the world. FreeSurfer (imaging software) parcellations of thickness and surface area of 34 cortical regions were compared between cases and controls in 3 separate age groups; children, adolescents and adults.

ENIGMAADHD2JPG

Subtle differences only in the group of children were found. The childhood effects were most prominent and widespread for the surface area of the cortex. More focal changes were found for thickness of the cortex. All differences were subtle and detected only at a group level, and thus these brain images cannot be used to diagnose ADHD or guide its treatment.

These subtle differences in the brain’s cortex were not limited to people with the clinical diagnosis of ADHD: they were also present – in a less marked form – in youth with some ADHD symptoms. This second finding results from a collaboration between the ENIGMA-ADHD Working Group and the Generation-R study from Rotterdam, which has brain images on 2700 children aged 9-11 years from the general population. The researchers found more symptoms of inattention to be associated with a decrease in cortical surface area. In a third study, using the NeuroImage data from Nijmegen and Amsterdam, familial effects on those regions that showed case-control differences were investigated.  Siblings of those with ADHD showed changes to their cortical surface area that resembled their affected sibling. This suggests that familial factors such as genetics or shared environment may play a role in brain cortical characteristics.

We identified cortical differences that are consistently associated with ADHD combining data from many different research groups internationally. We find that the differences extend beyond narrowly-defined clinical diagnoses and are seen, in a less marked manner, in those with some ADHD symptoms and in unaffected siblings of people with ADHD. This finding supports the idea that the symptoms underlying ADHD may be a continuous trait in the population, which has already been reported by other behavioural and genetic studies.’ In the future, the ADHD Working Group, which is led by Martine Hoogman and Barbara Franke from the Radboudumc in Nijmegen, hopes to look at additional key features in the brain- such as the structural connections between brain areas – and to increase the representation of adults affected by ADHD, in whom limited research has been performed to date.

Link to the article: Hoogman et al., Brain Imaging of the Cortex in ADHD: A Coordinated Analysis of Large-Scale Clinical and Population-Based Samples

To learn more about other projects that are carried out using ENIGMA-ADHD data, please also read the paper by Yanli Zhang-James and colleagues on bioRxiv. Here, the ENIGMA-ADHD data of the first and the second project were used to do prediction modelling.  

The ADHD Working Group is one of over 50 working groups of the ENIGMA Consortium, in which international researchers pull together to understand the brain alterations associated with different disorders and the role of genetic and environmental factors in those alterations. For more information about ENIGMA-ADHD please visit our website http://enigma.usc.edu/ongoing/enigma-adhd-working-group/ or contact Martine Hoogman martine.hoogman (at) radboudumc.nlenigma_300dpi

Epigenetic signature for attention-deficit/hyperactivity disorder

Attention-deficit/hyperactivity disorder (ADHD) is considered a complex disorder caused by underlying genetic and environmental risk factors. To make it even more complex, environmental factors can influence the expression of genes. This is called epigenetics.

Given the large proportion of the heritability of ADHD still to be explained, there is a growing interest in the epigenetic mechanisms that modulate gene expression. microRNAs (miRNA) are small parts in the human genome that do not code for genes, but instead regulate the expression of other genes by promoting the degradation or suppressing the translation of those target genes. miRNA therefore provide a means to integrate effects of genetic and environmental risk factors.

The human genome encodes more than 2500 different miRNAs, the majority of which are expressed in the brain. miRNAs are known to be involved in the development of the central nervous system and in many neurological processes including synaptic plasticity and synaptogenesis. Given the limited accessibility of the human brain for studying epigenetic modifications, miRNA profiling in peripheral blood cells is often used as a non-invasive proxy to study transcriptional and epigenetic biosignatures, and to identify potential clinical biomarkers for psychiatric disorders.

We recently investigated the role of microRNAs in ADHD at a molecular level, by conducting the first genome-wide integrative study of microRNA and gene expression profiles in blood of individuals with ADHD and healthy controls. We identified three miRNAs (miR-26b-5p, miR-185-5p and miR-191-5p) that have different expression levels in people with ADHD, compared to those without ADHD. When we investigated downstream miRNA-mediated mechanisms underlying the disorder this provided evidence that aberrant expression profile of these three miRNA may underlie changes in the expression of genes related with myo-inositol signaling. This mediates the biological response of a large number of hormones and neurotransmitters on target cells. We also found that these miRNAs specifically targeted genes involved in neurological disease and psychological disorders.

These findings show that epigenetic modifications through microRNAs play a role in ADHD, and provide novel insights into how these miRNA-mediated mechanisms contribute to the disorder. In the future, these miRNAs may be used as peripheral biomarkers that can be easily detected from blood, as is shown in the figure.

What´s next?

The mechanism through which miRNAs modify gene expression is complex and dynamic. Therefore, future studies are required to provide deeper insights into the epigenetic mechanisms underlying ADHD, and to identify specific molecular networks that may be crucial in the development of the disorder.

Further reading

Cristina Sánchez-Mora et al. Epigenetic signature for attention-deficit/hyperactivity disorder: identification of miR-26b-5p, miR-185-5p, and miR-191-5p as potential biomarkers in peripheral blood mononuclear cells, Neuropsychopharmacology, volume 44, pages 890–897 (2019).

https://www.nature.com/articles/s41386-018-0297-0

About the author

Cristina Sánchez-Mora is postdoctoral researcher at the Psychiatry, Mental Health and Addictions group at Vall d’Hebron Institut de Recerca (VHIR). Her research is part of the CoCA consortium that investigates comorbid conditions of ADHD

Are you genetically determined to act aggressively?

From road rage and bar fights to terror attacks and global confrontations, humans tend to be an aggressive species. On the average, members of the same species cause only 0.3 percent of deaths among mammals [1]. Astoundingly, in Homo sapiens the rate is around 2% (1 in 50), nearly 7 times higher! There are two crucial aspects that favor this kind of behavior: dwelling in social groups and being ferociously territorial. The chances are that struggle for various resources like suitable habitat, mates and food played a key role in shaping aggression in humans, favoring genetic variants that promote aggression and therefore increase changes of survival. Indeed, anthropologists who lived with exceptionally violent hunter-gatherers found that men who committed acts of homicide had more children, as they were more likely to survive and have more offspring [2]. This lethal legacy may be the reason we are here today.

You probably know some people that could be characterized as “having a short fuse”. Perhaps you have even pondered why they seem to have such a hard time to keep their temper in check? Indeed – while scientists have known for decades that aggression is hereditary, there is another crucial component to those angry flare-ups: self-control. In humans, the impulses to react violently stem from the ancient structures located deep within the brain. The part capable of controlling those impulses is evolutionally much younger and located just behind the forehead – the frontal lobes. Unfortunately, this “top-down” conscious control of aggressive impulses is slower to act compared to the circuits of eruptive violence deep in the brain.

People who are genetically predisposed toward aggression actually usually behave more violently than the average only when provoked. People not genetically susceptible to violent outbursts seem to be better able to remain calm and “brush it off”. The ones who are predisposed in fact try hard to control their anger, but have inefficient functioning in brain regions that control emotions – in the frontal lobes [2]. Several studies have found that men genetically susceptible to act aggressively are especially likely to engage in violence and other antisocial behavior if they were exposed to childhood abuse [3]. Again, we see that although genes may carry certain predispositions, there are essential environmental aspects that determine the final outcome.

Early physical aggression needs to be dealt with care. Long-term studies of physical aggression clearly indicate that most children, adolescent and even adults eventually learn to use alternatives to physical aggression [4]. Still, the importance of proper guidance and favorable environment cannot be understated. As mentioned before, Homo sapiens have been found to cause 2 percent of deaths among their fellows. However, this has fluctuated substantially throughout the history and in different cultures. During the medieval period, human-on-human violence was responsible for stunning 12 percent of recorded deaths. For the last century, people have been relatively peaceable compared to the Middle Ages, violence being the cause of death in just 1.33 percent of fatalities worldwide. In the least violent parts of the world today, the homicide rates are as low as 0.01 percent [1].

Our brains have evolved to monitor for danger and spark aggression in response to any perceived hazard as a defense mechanism. Aggression is part of the normal behavioral repertoire of most, if not all, species; however, when expressed in humans in the wrong context, aggression leads to social maladjustment and crime [5]. By identifying genes and brain mechanisms that predispose people to the risk of being violent – even if the risk is small – we may eventually be able to tailor prevention programs to those who need them most.

References

[1] Gómez, J. M., Verdú, M., González-Megías, A., Méndez, M. (2016). The phylogenetic roots of human lethal violence. Nature 538(7624), 233–237.

[2] Denson, T. F., Dobson-Stone, C., Ronay, R., von Hippel, W., Schira, M. M. (2014). A functional polymorphism of the MAOA gene is associated with neural responses to induced anger control. J Cogn Neurosci 26(7), 1418–1427.

[3] Cicchetti, D., Rogosch, F. A., Thibodeau, E. L. (2014). The effects of child maltreatment on early signs of antisocial behavior: Genetic moderation by Tryptophan Hydroxylase, Serotonin Transporter, and Monoamine Oxidase-A-Genes. Dev Psychopathol 24(3), 907–928.

[4] Lacourse, E., Boivin, M., Brendgen, M., Petitclerc, A., Girard, A., Vitaro, F., Paquin, S., Ouellet-Morin, I., Dionne, G., Tremblay, R. E. (2014). A longitudinal twin study of physical aggression during early childhood: Evidence for a developmentally dynamic genome. Psychol Med 44(12):2617–2627.

[5] Asherson, P., Cormand, B. (2016). The genetics of aggression: Where are we now? Am J Med Genet B Neuropsychiatr Genet 171(5), 559–561.

About the author:

Mariliis Vaht, PhD

Research Fellow of Neuropsychopharmacology at Institute of Psychology, University of Tartu, Estonia. Area of research: genetic and environmental factors in longitudinal health study designs.

Who is the average patient with ADHD?

Is there an ‘average ADHD brain’? Our research group (from the Radboudumc in Nijmegen) shows that the average patient with ADHD does not exist biologically. These findings were recently published in the journal. Psychological Medicine.

Most biological psychiatry research heavily relies on so-called case-control comparisons. In this approach a group of patients with for instance ADHD is compared against a group of healthy individuals on a number of biological variables. If significant group effects are observed those are related to for instance the diagnosis ADHD. This often results in statements such as individuals with ADHD show differences in certain brain structures. While our results are in line with those earlier detected group effects, we clearly show that a simple comparison of these effects disguises individual differences between patients with the same mental disorder.

Modelling individual brains

In order to show this, we developed a technique called ‘normative modelling’ which allows us to map the brain of each individual patient against typical development. In this way we can see that individual differences in brain structure across individuals with ADHD are far greater than previously anticipated. In future, we hope that this approach provides important insights and sound evidence for an individualized approach to mental healthcare for ADHD and other mental disorders.

Individual differences in ADHD

When we studied the brain scans of individual patients, the differences between those were substantial. Only a few identical abnormalities in the brain occurred in more than two percent of patients. Marquand: “The brains of individuals with ADHD deviate so much from the average that the average has little to say about what might be occurring in the brain of an individual.”

Personalized diagnosis of ADHD

The research shows that almost every patient with ADHD has her or his own biological profile. The current method of making a diagnosis of psychiatric disorders based on symptoms is therefore not sufficient, the authors say: “Variation between patients is reflected in the brain, but despite this enormous variation all these people get the same diagnosis. Thus, we cannot achieve a better understanding of the biology behind ADHD by studying the average patient. We need to understand for each individual what the causes of a disorder may be. Insights based on research at group level say little about the individual patient.”

Re-conceptualize mental disorders

The researchers want to make a fingerprint of individual brains on the basis of differences in relation to the healthy range. Wolfers: “Psychiatrists and psychologists know very well that each patient is an individual with her or his own tale, history and biology. Nevertheless, we use diagnostic models that largely ignore these differences. Here, we raise this issue by showing that the average patient has limited informative value and by including biological, symptomatic and demographic information into our models. In future we hope that this kinds of models will help us to re-conceptualize mental disorders such as ADHD.”

Further reading

Wolfers, T., Beckmann, C.F., Hoogman, M., Buitelaar, J.K., Franke, B., Marquand, A.F. (2019). Individual differences v. the average patient: mapping the heterogeneity in ADHD using normative models. Psychological Medicine, https://doi.org/10.1017/S0033291719000084 .

This blog was written by Thomas Wolfers and Andre Marquand from the Radboudumc and Donders Institute for Brain, Cognition and Behaviour in Nijmegen, The Netherlands. On 15 March 2019 Thomas Wolfers will defend his doctoral thesis entitled ‘Towards precision medicine in psychiatry’ at the Radboud university in Nijmegen. You can find his thesis at http://www.thomaswolfers.com