Common mental health symptoms in ADHD

Image by Anastasia Gepp from Pixabay
Excessive, uncontrolled mind-wandering is common to ADHD, but also to other mental health conditions. Mobile apps that prompt questions during the day can give more insight into the nature of these symptoms and how they differ between (often comorbid) conditions.

The majority of individuals with ADHD have one or more comorbid disorders. Comorbidity is a technical (and admittedly, not very cheerful) word for ‘co-occuring’, meaning that multiple disorders or conditions are present at the same time. Anxiety and depression are the most prevalent conditions that co-occur with ADHD.

Researchers and clinicians want to better understand this comorbidity in ADHD. Does having ADHD increase your risk of developing other conditions? Is there a biolgical mechanism that underlies both ADHD and other conditions? Or are symptoms of ADHD actually broader than the attentional, hyperactivity and impulsivity problems defined by the DSM/ICD, and therefore also linked to other conditions? Or all of the above?

Going with the third option (which by no means excludes the alternatives), clinicians have noticed that many individuals with ADHD experience symptoms that are not specific to ADHD, but are also often seen in other psychiatric conditions. You could call these symptoms ‘mainstream’, or ‘common’ mental health problems. Some examples that are often experienced by those with ADHD are emotional instability, sleep problems, low self-esteem, distractibility and concentration problems, and mental restlesnesss or excessive mind wandering.

Understanding these comorbidities better is important, because often one condition can hide the ‘true’ underlying condition. For instance, a person with ADHD who experiences many symptoms that are also characteristic of anxiety (i.e. low self-esteem, excessive mind-wandering, sleep problems, avoiding difficult situations). In such a case, the person could receive treatment for anxiety problems, while he or she is actually needing treatment for ADHD.

To distinguish between these conditions better, we need to find out more about these common symptoms. Being distracted can have many different causes and can happen in many different situations. For instance: are you distracted due to pervasive negative thoughts, because the task you’re doing is boring, or because you’re thinking of many related things and drift off to new ideas?

To learn more about the nature of these symptoms, researchers have given mobile apps or smartwatches to participants with ADHD. Several times a day, the watch buzzes and the app prompts a question that the person has to give answer to immediately. Questions can for instance be: How are you feeling right now? Have good/bad things happend to you in the last hour? How much has this affectd you? Were you concentrating on a task or where you distracted? Where you tinking about something (un)pleasant? etc. This method called ‘experience sampling’ can give very valuable information about someone’s symptoms. When combining the information from a lot of individuals, this can also identify differences between different disorders, that were not really known before.

If you want to learn more about this topic, you can watch this webinar by professor Philip Asherson from King’s College London. He explains the common mental health symptoms of ADHD in more detail, and gives examples from his research, also using experience sampling.

This blog is based on the webinar by Philip Asherson “ADHD in the mainstream” that was created as part of the CoCA project. The CoCA project investigates comorbid conditons of ADHD: http://www.coca-project.eu.

How psychiatric genetics can help to guide diagnostic practice and therapy

Recently, professor Stephen Faraone from SUNY Upstate University in the USA gave a webinar about genetic research in psychiatry (especially ADHD) and how this can help to better understand diagnosis and provide better treatment. In this blog I will share with you some highlights from this webinar.

  1. ADHD is a continuous trait in the population

ADHD is not something that you either have or don’t have. Rather, symptoms or characteristics of ADHD are present in the entire population, in varying severity. The system for psychiatric diagnoses is however based on categorical definitions that determine when a certain combination of symptoms and severity can be classified as a particular disorder. Although these categories can be of great help to provide public health data or determine insurance coverage, they often don’t really match individual cases. Hence there arise problems with heterogeneity, subtypes, subthreshold cases and comorbidity.

Genetic research has shown that psychiatric conditions such as ADHD are not caused by a few single genes, but rather by thousands or tens of thousands genetic variants that each contribute slightly to the ADHD risk. These so-called polygenic risk scores form a normal distribution across the entire population, with the majority of people having low polygenic risk scores (so a low to average risk of ADHD), while a small portion of individuals have a very low or very high risk. This adds to our understanding that ADHD is a continuous trait in the population.

Image from the webinar by prof. Stephen Faraone. The higher the number on the x-axis, the higher the genetic risk of having ADHD. Negative numbers mean reduced genetic risk of ADHD.

2. Comorbidity in psychiatry is the norm, rather than the exception

In the webinar, Stephen Faraone explains that in 90’s it was thought impossible that an individual can have both ADHD and depression. Now, we know better than that. There are substantial genetic correlations between different psychiatric disorders, meaning that the genes that increase the risk of for instance ADHD, also increase the risk of schizophrenia, depression, bipolar disorder, autism and tic disorder. This is further evidence that psychiatric conditions are not separate, categorial entities but rather arise from similar biological mechanisms.

3. Personalised medicine and pharmacogenetics are not yet sufficiently established to adopt widely and replace current medication on a broad scale

The second part of the webinar was about pharmacogenetic testing. This means that an individual’s genetic profile is used to determine whether a drug will be effective, and in what dose. Although this sounds promising, there is still a lot of discussion about the validity of such tests. This is due to varying results, differing protocols and large heterogeneity between studies. In some cases, pharmacogenetic testing can help to find the right treatment for an individual, for instance when this person is not responding well to regular treatment, but it is definitely not a fool-proof method yet. Better randomized controlled clinical trials are needed to improve reliability of these tests.

You can watch the full webinar here: https://www.youtube.com/watch?v=DLgqdJWZKIo

The genetics of having multiple mental health conditions

We know that psychiatric conditions have a strong genetic component. This means that genes play an important role in determining an individual’s risk or vulnerability to develop a psychiatric condition. However, there is evidence that there are genetic variants that increase the risk for multiple psychiatric disorders. This is called pleiotropy. Researchers of the “Cross-Disorder Group of the Psychiatric Genomics Consortium” have searched the entire genome of 727,000 individuals (of whom 233,000 were diagnosed with a psychiatric disorder) to identify genetic variants with such pleiotropy.

The researchers found one particular gene – called DCC – that increases vulnerability for all eight disorders that were investigated: ADHD, autism spectrum disorder, anorexia nervosa, bipolar disorder, major depression, obsessive compulsive disorder, schizophrenia and Tourette syndrome.

They also found more than 100 genetic variants that predispose to at least two psychiatric disorders, and around 20 variants that are associated with four or more. This means that the genes that contain these variants can be interesting to further understand why certain individuals are more vulnerable to develop psychiatric illnesses than others.

One of the researchers, professor Bru Cormand, explains more about this research in this blog.

Further reading: Cross-Disorder Group of the Psychiatric Genomics Consortium (2019): Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell, 179(7): 1469-1482.e11. https://www.sciencedirect.com/science/article/pii/S0092867419312760

Professor Cormand is involved in the CoCA research consortium where he investigates the genetic overlap between ADHD, major depression, anxiety disorder, substance use disorder and obesity. To read more about this, see for instance this other blog by him and dr. Judit Cabana Dominguez.

The notorious evening chronotype and my master’s thesis

Almost every person, healthy or not, suffers from occasional problems with sleep and circadian rhythm. In the modern days of 24/7 smartphone use and transcontinental flights, our internal body clock is having a hard time adjusting to the external cues. For the persons suffering from mental health issues, their impaired sleep cycle can be one of the cornerstone problems of daily living. Sleep problems have been confirmed to be a first symptom, consequence, or even a cause of such psychiatric conditions as major depression, bipolar disorder, ADHD, autism, substance abuse, and even aggressive behaviour. Their strong relations, however, have not been studied systematically and broadly just yet.

Why study the circadian rhythm?

Circadian rhythm is our inner clock that regulates a lot of important processes in the human body, including the sleep/wake cycle, the release of hormones and even the way we process medicines. This clock is run by the brain region called the hypothalamus, which piles up a protein called CLK (referring to “clock”), during the daytime. CLK, in turn, activates the genes which make us stay awake, but also gradually increases the creation of another protein called PER. When we have a lot PER, it turns off CLK production and makes us ready to sleep. As CLK is getting lower, this causes a decrease in PER, so that the process starts again with elevating CLK waking us up. This cycle happens at around 24-hour intervals and is greatly influenced by so-called zeitgebers, or time-givers, like light, food, noise and temperature. When our retina neurons catch light waves, the suprachiasmatic nucleus in our brain stops the production of the hormone called melatonin that induces sleep and starts producing noradrenaline and vasopressin instead to wake us. This is the exact reason why you cannot fall asleep after watching a movie at night.

PER
Figure 1. The smart protein CLK wakes us up and its friend PER gets us to sleep.

Sometimes our body clock fails to function, as in the case of jetlag when we feel bad after changing a time zone or social jetlag when we have to start work early at 8 am. It can go as far as a circadian rhythm disorder meaning you have either a delay or advancement of sleep phases or an irregular or even non-24-hour daily activities preference. However, in the general population, a small variation in the rhythm is quite normal and is usually referred to as a chronotype. It defines your preference of when to go to sleep and do your daily activities and is divided into 3 distinct versions. The radical points of these variations include a morning chronotype, or “larks”, who go somewhat 2-3 hours ahead of the balanced rhythm, and an evening chronotype, or “owls”, who are a little delayed. The larks feel and function better during the first half of the day and go to bed rather early, while the owls prefer to work in the evenings and go to bed and wake up naturally late. The third chronotype is the in-between, balanced version of these two.

arjan-stalpers-itBTNoD1PpA-unsplash
Figure 2. The ‘owls’ seem to have questionable personalities and suffer from psychiatric conditions more often!

What’s my study about?

Previous research has shown that many psychopathologies are linked to an evening circadian preference. For my master thesis research, I am investigating whether we can identify specific profiles in sleep and circadian rhythm problems that are linked to specific mental health problems. There was even a curious study where researchers linked the Dark Triad personalities, which include people with tendencies for manipulation, lack of empathy, and narcissism, to the evening chronotype. Maybe this leaves some evidence for the famous quote that “evil does not rest”. However, there’s a great variation in sleep duration and perceived quality of sleep in patients with various diseases. We hope to divide such persons into more or less accurate groups with a sleep profile that would predict and aid the correct diagnosis of one or the other mental health condition.

The psychopathologies are included in our study as so-called dimensions, which look at each psychiatric syndrome not as with a norm/pathology cut-off but rather as a continuum of symptoms severity. This approach allows us to see if the sleep/circadian profile we identify refers to mental health in general or can be a distinguished part of a certain psychiatric condition. It might be that all dimensions, like depression and autistic spectrum disorders, have an evening chronotype and some non-specific sleep problems. Alternatively, we might find out that a person with symptoms of depression would sleep more or less than average and go to bed later, whereas a person with anxiety would go to sleep later as well but wake up at night very often despite an average summed up sleep duration.

The circadian rhythm changes throughout a lifetime from an early to an evening chronotype towards adolescence and then gradually shift back to the earlier preference with older age. Across the whole lifespan people constantly face varying quality of night sleep. Moreover, each psychiatric condition has a particular age of onset and sometimes changes its character with time. These are the reasons why our study will also look at how the sleep/circadian profiles change within the development phases from children (4-12 years) to adolescents (13-18) to adults (19-64) to the elderly (≥65) and if they affect males and females differently.

Why would it matter?

Should we discover distinct links between the profiles of sleep/circadian problems and certain conditions, other studies can then look into whether these profiles could be the reasons behind developing a mental health condition. It’d be interesting to finally learn what is a chicken and an egg in each profile-disease relation. For instance, should we really treat ADHD patients with melatonin and bright-light lamps instead of stimulants?

sabri-tuzcu-KHBvwAnWFmc-unsplash
Figure 3. Maybe if we adopt a typical cat’s lifestyle, we get less mental health problems. 🙂

Dina Sarsembayeva is a neurologist and a research master’s student at the University of Groningen. She is using the data from the CoCa project to learn if the chronotypes and sleep problems can be turned into profiles to predict specific psychiatric conditions.

Further reading

  1. Walker, W. H., Walton, J. C., DeVries, A. C. & Nelson, R. J. Circadian rhythm disruption and mental health. Transl. Psychiatry 10, (2020).
  2. Logan, R. W. & McClung, C. A. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nature Reviews Neuroscience vol. 20 49–65 (2019).
  3. Jones, S. G. & Benca, R. M. Circadian disruption in psychiatric disorders. Sleep Med. Clin. 10, 481–493 (2015).
  4. Taylor, B. J. & Hasler, B. P. Chronotype and Mental Health: Recent Advances. Curr. Psychiatry Rep. 20, (2018).

The genetic architecture of the brain

Genes play a big role in determining the architecture of our brain: the way it’s folded, the thickness of the outer layer, and the way different brain areas are connected. By combining data from all over the world, a large collaboration of researchers from the ENIGMA consortium has now identified almost 200 genetic variants that are involved in this brain architecture. These findings can help us to further understand the genetics of brain disorders. 

Our genes contain the blueprint of our bodies. They contain information about how our cells function, and they determine for instance the colour of our eyes and hair, or whether we like cilantro (coriander) and bitter tastes. For some traits we know very well how they are influenced by genes. Eye color for instance is coded by only a few genes. But for many other traits such as height and personality, many different genes are involved. In addition, other (non-genetic) factors also influence these traits, such as malnutrition that can cause stunted growth.

The architecture of the brain is influenced by a large numer of genes, of which we still know very little. To investigate this, researchers combined genetic data of over 50.000 individuals with MRI-data. MRI-scans can show in detail the thickness of the outer layer of the brain, where all the brain cells are (also called the grey matter). They can also be used to measure how much this layer is folded, which gives information about the total surface of this outerlayer. This brain architecture is unique to every individual. The extent of the folds and the thickness of the outer layer have previously (in other research studies) been linked to cognitive abilities and various neurological and psychiatric disorders, such as Alzheimer’s disease, schizophrenia, depression, autism, and ADHD. It is therefore helpful to understand the genetics of this architecture, because it will help us to better understand the genetic mechanisms of these conditions.

The findings from this research study are also explained in this video:

This important research can only be done by combining a lot of data and collaborating with a large number of scientists and institutes. The ENIGMA consortium has been set upt to facilitate this kind of world-wide collaboration. The research that has now been published is the combined effort of more than 360 scientists from 296 departments across 184 different institutions and universities. They also made their results downloadable so that everyone who is interested can have a closer look.

The full publication can be found here: https://science.sciencemag.org/content/367/6484/eaay6690

See also our previous blogposts about these topics:

 

 

 

Prevalence and cost of ADHD comorbidity

Do individuals with ADHD more often suffer from depression, anxiety, substance abuse or severe obesity, than individuals without ADHD? Are there differences between men and women in how often this is the case? Does having ADHD in addition to one of these conditions result in higher health care costs?

The short answers to these questions, are yes, yes and yes. In the CoCA-project, researchers have investigated these questions using very large datasets including Scandinavian birth registries that contain information of millions of people. This allows us to get a better understanding of how often conditions occor, how often they occur together, and how often they occur in men vs women. Furthermore, we have investigated health insurance data from Germany to study patterns of health care costs associated with ADHD and its comorbid conditions.

The interpretation of these data is however not simple. That is why we have recorded a webinar with dr. Catharina Hartman from Groningen, The Netherlands. She is the leader of these studies and can explain what these findings can and cannot tell us. The webinar ends with implications for policy makers and health care professionals, based on these findings.

Food & mental health: the Eat2beNICE project

We all know that a healthy lifestyle is beneficial for our health. But many of us forget that eating healthy, exercising regularly and getting enough sleep is also important for good mental health. In the Eat2beNICE research project a large team of researchers is investigating the link between food and mental health, specifically impulsivity, compulsivity and aggression. To share this knowledge with the rest of the world, they work together with food consultant Sebastian Lege.

The Eat2beNICE project just released a video to explain what the research is about and why it’s important. In this video Sebastian Lege visits the project coordinator Alejandro Arias-Vasquez, en several other researchers in the consortium.

More information about the Eat2beNICE project can be found at http://www.newbrainnutrition.com

 

 

 

 

 

Who is the average patient with ADHD?

Is there an ‘average ADHD brain’? Our research group (from the Radboudumc in Nijmegen) shows that the average patient with ADHD does not exist biologically. These findings were recently published in the journal. Psychological Medicine.

Most biological psychiatry research heavily relies on so-called case-control comparisons. In this approach a group of patients with for instance ADHD is compared against a group of healthy individuals on a number of biological variables. If significant group effects are observed those are related to for instance the diagnosis ADHD. This often results in statements such as individuals with ADHD show differences in certain brain structures. While our results are in line with those earlier detected group effects, we clearly show that a simple comparison of these effects disguises individual differences between patients with the same mental disorder.

Modelling individual brains

In order to show this, we developed a technique called ‘normative modelling’ which allows us to map the brain of each individual patient against typical development. In this way we can see that individual differences in brain structure across individuals with ADHD are far greater than previously anticipated. In future, we hope that this approach provides important insights and sound evidence for an individualized approach to mental healthcare for ADHD and other mental disorders.

Individual differences in ADHD

When we studied the brain scans of individual patients, the differences between those were substantial. Only a few identical abnormalities in the brain occurred in more than two percent of patients. Marquand: “The brains of individuals with ADHD deviate so much from the average that the average has little to say about what might be occurring in the brain of an individual.”

Personalized diagnosis of ADHD

The research shows that almost every patient with ADHD has her or his own biological profile. The current method of making a diagnosis of psychiatric disorders based on symptoms is therefore not sufficient, the authors say: “Variation between patients is reflected in the brain, but despite this enormous variation all these people get the same diagnosis. Thus, we cannot achieve a better understanding of the biology behind ADHD by studying the average patient. We need to understand for each individual what the causes of a disorder may be. Insights based on research at group level say little about the individual patient.”

Re-conceptualize mental disorders

The researchers want to make a fingerprint of individual brains on the basis of differences in relation to the healthy range. Wolfers: “Psychiatrists and psychologists know very well that each patient is an individual with her or his own tale, history and biology. Nevertheless, we use diagnostic models that largely ignore these differences. Here, we raise this issue by showing that the average patient has limited informative value and by including biological, symptomatic and demographic information into our models. In future we hope that this kinds of models will help us to re-conceptualize mental disorders such as ADHD.”

Further reading

Wolfers, T., Beckmann, C.F., Hoogman, M., Buitelaar, J.K., Franke, B., Marquand, A.F. (2019). Individual differences v. the average patient: mapping the heterogeneity in ADHD using normative models. Psychological Medicine, https://doi.org/10.1017/S0033291719000084 .

This blog was written by Thomas Wolfers and Andre Marquand from the Radboudumc and Donders Institute for Brain, Cognition and Behaviour in Nijmegen, The Netherlands. On 15 March 2019 Thomas Wolfers will defend his doctoral thesis entitled ‘Towards precision medicine in psychiatry’ at the Radboud university in Nijmegen. You can find his thesis at http://www.thomaswolfers.com

ADHD Is A Risk Factor For Type Two Diabetes And High Blood Pressure, As Well As Other Psychiatric Disorders

All Swedish residents have their health records tracked through unique personal identity numbers. That makes it possible to identify psychiatric and medical disorders with great accuracy across an entire population, in this case encompassing more than five and a half million adults aged 18 to 64. A subgroup of more than 1.6 million persons between the ages of 50 and 64 enabled a separate examination of disorders in older adults.

Slightly over one percent of the entire population (about 61,000) were diagnosed with ADHD at some point as an adult. Individuals with ADHD were nine times as likely to suffer from depression as were adults not diagnosed with ADHD. They were also more than nine times as likely to suffer from anxiety or a substance use disorder, and twenty times as likely to be diagnosed with bipolar disorder.  These findings are very consistent with reports from clinical samples in the USA and Europe.

Adults with ADHD also had elevated levels of metabolic disorders, being almost twice as likely to have high blood pressure, and more than twice as likely to have type 2 diabetes. Persons with ADHD but without psychiatric comorbidities were also almost twice as likely to have high blood pressure, and more than twice as likely to have type 2 diabetes.

Similar patterns were found in men and women with ADHD, although comorbid depression, bipolar disorder, and anxiety were moderately more prevalent in females than in males, whereas substance use disorder, type 2 diabetes, and hypertension were more prevalent in males than in females.

ADHD was less than a third as prevalent in the over-50 population as in the general adult population. Nevertheless, individuals in this older group with ADHD were twelve times as likely to suffer from depression, anxiety, or substance use disorders, and more than 23 times as likely to be diagnosed with bipolar disorder as their non-ADHD peers. They were also 63% more likely to have high blood pressure, and 72% more likely to have type 2 diabetes.

The authors noted, “Although the mechanisms underlying these associations are not well understood, we know from both epidemiologic and molecular genetic studies that a shared genetic predisposition might account for the co­existence of two or more psychiatric conditions. In addition, individuals with ADHD may experience increased difficulties as the demands of life increase, which may contribute to the development of depression and anxiety.” As for associations with hypertension and type 2 diabetes, these “might reflect health ­risk behaviors among adult patients with comorbid ADHD in addition to a shared biological substrate. As others have noted, inattention, disinhibition, and disorganization associated with ADHD could make it difficult for patients to adhere to treatment regimens for metabolic disorders.” They concluded that “Clinicians should remain vigilant for a wide range of psychiatric and metabolic problems in ADHD affected adults of all ages and both sexes.”

Stephen Faraone is distinguished Professor of Psychiatry and of Neuroscience and Physiology at SUNY Upstate Medical University and is working on the H2020-funded project CoCA. 

REFERENCES

Qi Chen, Catharina A. Hartman, Jan Haavik, Jaanus Harro, Kari Klungsøyr, Tor­Arne Hegvik, Rob Wanders, Cæcilie Ottosen, Søren Dalsgaard, Stephen V. Faraone, Henrik Larsson, “Common psychiatric and metabolic comorbidity of adult attention-deficit/hyperactivity disorder: A population-based cross-sectional study,” PLoS ONE (2018), 13(9): e0204516. https://doi.org/10.1371/journal.pone.0204516.

Ghost busters: why even high ranking psychotherapy studies might be lousy

img_4358The last half year saw two high ranking psychotherapy studies in depression, published in the most prestigious journals of our profession. While in principle this is laudable, in these specific cases it is not doing any good as the studies fall short to prove what they are actually claiming and also, because they sack medical care for the sake of cost. Let’s have a closer look.

The first paper (https://www.ncbi.nlm.nih.gov/pubmed/27461440), on the “COBRA” study, was published in Lancet (!!!) and compared „behavioral activation” delivered by „junior mental health workers“ (i.e. relatively untrained and, first and foremost, receiving relatively small wages) is just as effective as routine CBT delivered by trained psychologist (which is the gold standard psychotherapy treatment in depression). So depression treatment can be quite unspecific and cheap! Yay!

Not.

The most important drawback is the that the primary endpoint was set at twelve months. As the average length of a depressive episode is six to eight month without treatment, this makes no sense at all. Imagine that a study on two treatments aimed at relieving common cold would set its primary endpoint at 4 weeks. Would you buy this? As neither a survival plot (Kaplan-Meier-Plot) nor any other time course are shown, being suspicious is appropriate.

A further, unfortunately quite common, drawback is the lack of a sham psychotherapy group (i.e., this study is not placebo controlled). Given the year-long course, it may quite well have shown that it is as effective as the two other groups.

This is made even worse by the fact that 80% of participants in both groups received anti-depressant drug treatment. Likely, a ceiling effect is effective, further obscuring any effect of whatever psychotherapy is done.

This is not a non-inferiority trial. This is a failed trail.

Another study published in JAMA Psychiatry (https://www.ncbi.nlm.nih.gov/pubmed/27487573) echoes the COBRA study, although changing the flavor. Here, psychodynamic (not behavioral activation) was compared against CBT in depression. I don’t want to nag about the underpowered sample for a non-inferiority trial (especially when looking at how many patients attended more than five sessions (116 in total). Again, we have an endpoint which is rather late (5 month) without any description of time courses, and again sham psychotherapy is lacking. Even worse, that average Hamilton score (HAM-D, likely HAM-D 17) was 21±6 points. This is quite low and barely reaches the border to moderate depression; the usual cut-off for study inclusion in pharma trials lies between 20 and 22. This means that many patients with mild depression were included, that usually are not the target population for depression studies. Any differences to placebo/sham are hard to demonstrate due to floor effects, especially when considering the low number of patients adhering to therapy and the measured effect size of 0.6 (Cohen’s d, corresponding to a medium effect size). Considering all this, watchful waiting, mere psychoeducation or having a beer every week or so would have had the same effect, namely, a reduction of five points on the HAM-D 17, as this is just the naturalistic course of mild to medium depression. An indicator of this are the significantly overlapping SD measurements pre- and post-treatment (wisely enough, the authors did not go for graphical display of their data). The most parsimonious interpretation of the data thus is that both treatments are equally ineffective!

You may ask about antidepressant use here as well. There is a simple answer: we don’t know. The numbers of patients on antidepressants are not given at all! That they were there, we know, as there is a small subclause: „We found no statistically significant interaction between the use of psychotropic medication and treatment group on the rate of change in the HAM-D”.

This is another failed trail. Although it was highly published…

Unsurprisingly, the rate of recidivism (which is a major effect of psychotherapy) is not given in any of the studies.

It is very surprising however that these studies were published so well, despite of these obvious flaws. I can only speculate on the reasons for this. Regarding the Lancet paper (COBRA), I assume that economic reasons play a major role. Cheap BA treatment by “juniors” (did not we just learn to abandon that word from our vocabulary?) is as effective as CBT by expensive, greedy psychologist. That makes treatment less expensive, which however is somewhat tainted by the fact that it is ineffective (notwithstanding the commonsense experience that unspecific BA especially in early stage depression by be quite helpful). Never mind. The psychodynamic study might have undergone a “wishful thinking” review process – so many people are out there who desperately wish that psychodynamic therapy works as well as CBT… so this one came in quite handy. However, no favor was done to the field, on contrary. We do not need so badly designed (or at least presented) studies; what we do need are psychotherapy trials adhering to the highest standards in analogy to drug trials: i.e. presenting time courses, studying severe cases, being well powered with low attrition rates, and – most important – including a sham (=placebo) condition.