Genetics of dopamine and serotonin explain overlap in psychiatric disorders

Image by chenspec from Pixabay

Psychiatric disorders such as attention deficit / hyperactivity disorder (ADHD), autism, major depression or bipolar disorder, often overlap and occur together. For example, individuals with ADHD on average experience twice as many depressive symptoms as the general population without ADHD [1,2]. In addition to the distress and impairment that is brought on by a single psychiatric condition, having multiple conditions can hugely increase the severity of symptoms and hinder treatment. To better understand why these disorders overlap, we investigated the genetic risk factors that are shared among psychiatric disorders, and found several genes that play important roles in regulating two signaling-mechanisms of the brain: dopamine and serotonin [3].

Dopamine and serotonin are two important neurotransmitters (messengers molecules that transmit messages between brain cells) that control a wide range of essential functions in your brain (e.g. controlling your movements, cognition, motivation, regulation of emotions, and responding to reinforcement and reward). For that reason, alterations in these two systems have been related with the physiopathology of several psychiatric disorders, and also have been pointed as possible therapeutic targets for them.

We systematically explored the contribution of common variants in genes involved in dopaminergic and serotonergic neurotransmission in eight psychiatric disorders (ADHD, anorexia nervosa, autism spectrum disorder , bipolar disorder, depression, obsessive-compulsive disorder, schizophrenia and Tourette’s syndrome) studied individually and in combination. To do so, we used data from the Psychiatric Genomics Consortium (PGC, https://www.med.unc.edu/pgc/) to explore the entire genome in thousands of patients with different psychiatric conditions, which were compared with controls (individuals without any psychiatric condition).

In this way, we could identify variations in genes (and in groups of related genes) that confer susceptibility to a given disorder. For example, a gene named CACNA1C that is involved in the connectivity between brain cells, was found to contribute to both bipolar disorder and schizophrenia. Using this approach, we found 67 dopaminergic and/or serotonergic genes associated with at least one of the eight studied disorders, and twelve of them were associated with two conditions. Interestingly, five out of these twelve genes, including CACNA1C, belong to both the dopaminergic and serotonergic neurotransmitter systems, highlighting the importance of those genes that participate in both systems and their high interconnectivity. Next,  we analyzed groups of genes that work together, and found that the dopaminergic genes have an important role in ADHD, autism, depression, and in the combination of all of the eight disorders that we studied. We also found that the group of serotonergic genes are relevant for the overlap between depression and bipolar disorder.

These results  support the existence of a set of dopaminergic and serotonergic genes that increase the risk of having multiple psychiatric conditions. Having identified these genes, the next step is to investigate if any of these could be targeted by new drugs that directly influence specific parts of the dopaminergic or serotonergic system, compared to the more unspecific drugs that currently exist. That would be an important step for treating psychiatric comorbidity.

If you want to know more about this research, you can read our publication here.

This blog was written by dr. Judit Cabana-Domínguez. She is a postdoctoral researcher of psychiatric genomics at the Vall d’Hebron Research Institute (VHIR). The work described here is part of the CoCA project on comorbid conditions of ADHD.

References

  1. McIntosch et al. (2009). Adult ADHD and comorbid depression: A consensus-derived diagnostic algorithm for ADHD (nih.gov) Neuropsychiatric Disease and Treatment, 5: 137-150. doi: 10.2147/ndt.s4720
  2. Di Trani et al. (2014). Comorbid Depressive Disorders in ADHD: The Role of ADHD Severity, Subtypes and Familial Psychiatric Disorders (nih.gov) Psychiatry Investigation, 11(2): 137-142. doi: 10.4306/pi.2014.11.2.137
  3. Cabana-Domínguez et al. (2022). Comprehensive exploration of the genetic contribution of the dopaminergic and serotonergic pathways to psychiatric disorders. Translational Psyciatry, 12(1): 11. doi: 10.1038/s41398-021-01771-3

What have we learned about ADHD comorbidities?

After 5.5 years, the CoCA project has come to an end. In this large-scale European research project, an interdisciplinary group of researchers investigated comorbid conditions of ADHD. They particularly focussed on depression, anxiety, substance use disorder and obesity, as these conditions frequently co-occur with ADHD in adulthood.

What has this extensive study brought us? Experts dr. Catharina Hartman (University Medical Center Groningen, The Netherlands) and prof. dr. Andreas Reif (University Hospital Frankfurt, Germany) were invited by Jonathan Marx for an interview on the online radio program Go To Health Media. In this program they talk about several aspects of the CoCA project: How often do comorbid conditions co-occur with ADHD? What do the genetics of ADHD comorbidities tell us? What should clinicians do to prevent or reduce these comorbidities in ADHD?

As professor Andreas Reif summarizes at the end of the interview, the main things that we learned from the CoCA project are:

  1. Comorbidity in ADHD is a very big problem. Adults with ADHD frequently have co-occuring conditions such as depression, anxiety, obesity and to a bit lesser extent substance use disorder.
  2. The type and prevalence of comorbidities differ between men and women.
  3. There is considerable genetic overlap between ADHD and comorbid conditions. We think that at least part of the overlap between comorbidities is caused by genetic effects (next to environmental effects that also play a role).
  4. The dopamine system plays an important role in comorbidity, through influencing brain processes.
  5. Disturbances in the circadian system (i.e. sleep cycle) are unlikely to play a causal role in these comorbidities, but they might be a consequence.
  6. Clinicans should look out for comorbidities when they treat ADHD patients, and inform their patients about their increased risk to develop comorbidities so that they can take preventive measures (i.e. be careful with alcohol to avoid substance use disorder). Secondly, clinicians should actively look out for ADHD symptoms when treating conditions such as depression, anxiety, substance use disorder or obesity.

Watch the full interview with both experts by clicking on the image below:

More information about the CoCA project: www.coca-project.eu

IS GENETICS BEHIND THE CO-OCCURRENCE OF ADHD AND OTHER DISORDERS?

A group of researchers from Spain, The Netherlands, Germany, Estonia, Denmark and USA have joined efforts to gain insight into the genetics of ADHD and its comorbidities. This ambitious objective was addressed by the Work Package 2 of a big project called CoCA: “Comorbid Conditions of Attention deficit/hyperactivity disorder (ADHD)”, funded by the European Union for the period 2016-2021.

In psychiatry, the co-occurrence of different conditions in the same individual (or comorbidity) is the rule rather than the exception. This is particularly true for ADHD, where conditions like major depressive disorder or substance use disorders frequently add to the primary diagnosis and lead to a worse trajectory across the lifespan.

There are different reasons that may explain the advent of the comorbidities: Sometimes the two conditions have independent origins but coincide in a single patient. Comorbidity can also appear as a consequence of a feature of a primary disorder that leads to a secondary disorder. For example, impulsivity, a trait that is common in ADHD, can be an entry point to substance use. Comorbidity can also be the result of shared genetic causes. The latter has been the focus of our investigations and it involves certain risk genes that act on different pathologies, a phenomenon called pleiotropy.

Our project started with an approach based on the exploration of candidate genes, particularly those involved in neurotransmission (i.e. the connectivity between neurons) and also in the regulation of the circadian rhythm. We used genetic data of more than 160,000 patients with any of eight psychiatric disorders, including ADHD, and identified a set of neurotransmission genes that are involved at the same time in ADHD and in autism spectrum disorder [1]. In another study we identified the same gene set as involved in obesity measures [2].

Then we opened our analyses to genome-wide approaches, i.e. to the interrogation of every single gene in the genome. To do that we used different statistical methods, including the estimation of the overall shared genetics between pairs of disorders (genetic correlation, rg), the prediction of a condition based on the genetic risk factors for another condition (polygenic risk score analysis, PRS) and the establishment of the causal relationships between disorders (mendelian randomization). As a result, we encountered genetic connections between ADHD and several psychiatric disorders, like cannabis or cocaine use disorders [3, 4, 5], alcohol or smoking-related phenotypes [6, 7, 8], bipolar disorder [9], depression [6], disruptive behavior disorder [10], but also with personality or cognition traits, like neuroticism, risk taking, emotional lability, aggressive behavior or educational attainment [6 , 11, 12, 13], or with somatic conditions, such as obesity [11, 12].

All these results and others, reported in more than 40 (!) scientific publications, support our initial hypothesis that certain genetic factors cut across psychiatric disorders and explain, at least in part, the comorbidity that we observe between ADHD and many other conditions. This information can be very useful to anticipate possible clinical trajectories in ADHD patients, and hence prevent potential negative outcomes.

Dr. Bru Cormand is full professor of genetics and head of the department of Genetics, Microbiology & Statistics at the University of Barcelona. He leads workpackage 2 of the CoCA project (www.coca-project.eu) on the genetics of ADHD comorbidity.


References

  1. Comprehensive exploration of the genetic contribution of the dopaminergic and serotonergic pathways to psychiatric disorders | medRxiv
  2. Cross-disorder genetic analyses implicate dopaminergic signaling as a biological link between Attention-Deficit/Hyperactivity Disorder and obesity measures – PubMed (nih.gov)
  3. Attention-deficit/hyperactivity disorder and lifetime cannabis use: genetic overlap and causality – PubMed (nih.gov)
  4. Genome-wide association study implicates CHRNA2 in cannabis use disorder – PubMed (nih.gov)
  5. Genome-wide association meta-analysis of cocaine dependence: Shared genetics with comorbid conditions – PubMed (nih.gov)
  6. Association of Polygenic Risk for Attention-Deficit/Hyperactivity Disorder With Co-occurring Traits and Disorders – PubMed (nih.gov)
  7. Investigating causality between liability to ADHD and substance use, and liability to substance use and ADHD risk, using Mendelian randomization – PubMed (nih.gov)
  8. Genetic liability to ADHD and substance use disorders in individuals with ADHD – PubMed (nih.gov)
  9. Genetic Overlap Between Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder: Evidence From Genome-wide Association Study Meta-analysis – PubMed (nih.gov)
  10. Risk variants and polygenic architecture of disruptive behavior disorders in the context of attention-deficit/hyperactivity disorder – PubMed (nih.gov)
  11. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder – PubMed (nih.gov)
  12. Shared genetic background between children and adults with attention deficit/hyperactivity disorder – PubMed (nih.gov)
  13. RBFOX1, encoding a splicing regulator, is a candidate gene for aggressive behavior – PubMed (nih.gov)

Genetic risk scores give new insights into the overlap between ADHD and insomnia

Psychiatric disorders, such as ADHD, are defined by categorical diagnostic borders: you either have it or you don’t. Research has shown that these borders do not accurately reflect what is happening on a biological level. In fact, these are complex traits that can be defined as quantitative characteristics that are present in people in different degrees. When you have or experience these traits in a very high degree, you may classify as having a psychiatric disorder. We also know that both genetic and environmental factors contribute to how much an individual is liable to ‘develop’ a psychiatric disorder, and that for each person, it is a different combination of such factors. This large variability between individuals is called heterogeneity.

The fact that ADHD is very often accompanied by other disorders (called comorbidities) also contributes to the notion that these conditions cannot be defined as a simple “yes/no” categorization. This refers to the notion of pleiotropy, meaning that one gene or biological mechanism can result in different outcomes. During my master’s thesis project, we investigated the genetic relationships between ADHD and insomnia, which is one of the most common conditions to co-occur with ADHD. We also looked into the role of depression, another common comorbidity, in the overlap between insomnia and ADHD.

Nowadays, there are very large datasets that we can use to explore such questions. In order to try to disentangle the genetic relationship between ADHD and insomnia, we calculated a genetic risk score for each individual. This method determines the estimated risk that an individual has to develop a certain trait based on their genetic make-up.  We found that the genetic risk score for insomnia was linked to ADHD symptoms, and vice-versa: the genetic risk score for ADHD was linked to insomnia. We also observed a possible distinct genetic relationship between hyperactivity and inattention symptoms and insomnia: while we found that there was a shared genetic risk for insomnia and hyperactivity symptoms, we did not find this link with inattention symptoms.

Next, we tested the effect of depression in these relationships by the inclusion of depression-related variables as covariates in our analyses. We found that the association between genetic risk score for insomnia and ADHD symptoms was no longer considered significant, while the association between the genetic score for ADHD with insomnia was weaker. At last, we analysed the association of cumulative genetic risk for ADHD with insomnia while separating the individuals in two different groups by broad depression. The results suggest that genetic risk for ADHD is similarly associated with insomnia in individuals with and without depression. This indicates that the genetic relationship observed between ADHD and insomnia is not solely a consequence of the comorbidity between depression and the other two conditions.

The take-home message is that with these results we show that there are shared genetic influences between conditions that are traditionally defined as distinct or separate, so all three conditions might be all entangled in their underlying genetic factors. By advancing our understanding of how ADHD and its comorbidities are related, we can better refine the definition of ADHD.  Also, from this research we learn more about the underlying mechanisms of ADHD (and associated conditions) from a biological (genetic) perspective. As the next step, we plan to include genetic data for separate ADHD symptom dimensions (hyperactivity and inattention), as well as depression in our analyses.

Victória Trindade Pons

I have recently concluded my Master’s in Biomedical Sciences at the Radboud University. This work was part of my final internship and was developed under the supervision of Dr. Nina Roth Mota in the Department of Human Genetics of the Radboudumc. This study is part of the CoCa project (Comorbid Conditions of ADHD), which has the aim to gain insight into the mechanisms underlying ADHD comorbidity and calculate the burden associated with such comorbidity for healthcare, economy, and society.

Picture from pixabay.

The genetics of having multiple mental health conditions

We know that psychiatric conditions have a strong genetic component. This means that genes play an important role in determining an individual’s risk or vulnerability to develop a psychiatric condition. However, there is evidence that there are genetic variants that increase the risk for multiple psychiatric disorders. This is called pleiotropy. Researchers of the “Cross-Disorder Group of the Psychiatric Genomics Consortium” have searched the entire genome of 727,000 individuals (of whom 233,000 were diagnosed with a psychiatric disorder) to identify genetic variants with such pleiotropy.

The researchers found one particular gene – called DCC – that increases vulnerability for all eight disorders that were investigated: ADHD, autism spectrum disorder, anorexia nervosa, bipolar disorder, major depression, obsessive compulsive disorder, schizophrenia and Tourette syndrome.

They also found more than 100 genetic variants that predispose to at least two psychiatric disorders, and around 20 variants that are associated with four or more. This means that the genes that contain these variants can be interesting to further understand why certain individuals are more vulnerable to develop psychiatric illnesses than others.

One of the researchers, professor Bru Cormand, explains more about this research in this blog.

Further reading: Cross-Disorder Group of the Psychiatric Genomics Consortium (2019): Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell, 179(7): 1469-1482.e11. 

Professor Cormand is involved in the CoCA research consortium where he investigates the genetic overlap between ADHD, major depression, anxiety disorder, substance use disorder and obesity. To read more about this, see for instance this other blog by him and dr. Judit Cabana Dominguez.

“No I do not have ADHD, I am just busy!”, but still very interesting for genetic studies!

Do you sometimes find it difficult to pay attention? Can you be very disorganized at times, or very rigid and inflexible? Although difficulties with attention, organization and rigidity are symptoms of psychiatric disorders, these traits are not unique to people with a diagnosis. And that is very useful for studying the genetics of psychiatric disorders.

Being easily distracted, liking things to go in a certain way, having a certain order in the way you do things, these might all be things you recognize yourself (or someone you know) in, while you (or they) are not diagnosed with any psychiatric disorder. We actually know that many of these symptoms are indeed found in a range in the general population, with some people showing them a lot, some a little and some not at all. If these symptoms are also present in people without a diagnosis then why should we only study people with a diagnosis to learn more about the biology of symptom-based disorders?

Many psychiatric disorders, like attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are disorders that ‘run in the family’. Using family-based and genetic studies it was found that they are actually highly heritable. However the underlying genetic risk factors turned out to be difficult to find. Enormous samples sizes (comparing more than 20 000 people with the disorder to even more individuals without the disorder) were needed to robustly find just a few genetic risk factors, although we know that many more genetic factors contribute. Even though these disorders are highly prevalent, collecting genetic data on psychiatric patients for research is still challenging. Using population-based samples – that include all varieties of people from the general population – can be a good alternative to reach large sample sizes for powerful genetic studies.

Taking together the fact that psychiatric-like symptoms are also, to a certain degree, present in the general population, and the fact that genetic studies can benefit from large(r) sample sizes to find genetic associations, it can be very interesting to study psychiatric-like traits in population-based samples. This is indeed what happened in the field of psychiatric genetics. The first proof-of-concept studies were able to show an astonishing overlap in genetic factors of more than 90% between ADHD and ADHD symptoms in the general population. Our own research group was able to show that certain autistic traits, like rigidity, indeed share a genetic overlap with ASD and that genes that were previously linked to ASD show an association to autistic traits in the population. These results show that genetic factors involved in disorder-like traits are overlapping with genetic factors involved in the clinical diagnosis, and therefore can indeed be used to study the biology of psychiatric disorders.

So next time you feel distracted/rigid/disorganized, don’t get discouraged, but consider signing up for a genetic study. Science might need you!

Janita Bralten is a postdoctoral researcher at the department of Human Genetics in the Radboud university medical center, Nijmegen, the Netherlands. Her research focusses on the genetics of psychiatric disorders.

Further reading:

Bralten J, van Hulzen KJ, Martens MB, Galesloot TE, Arias Vasquez A, Kiemeney LA, Buitelaar JK, Muntjewerff JW, Franke B, Poelmans G. Autism spectrum disorders and autistic traits share genetics and biology. Mol Psychiatry. 2018 May;23(5):1205-1212.

Middeldorp CM, Hammerschlag AR, Ouwens KG, Groen-Blokhuis MM, Pourcain BS, Greven CU, Pappa I, Tiesler CMT, Ang W, Nolte IM, Vilor-Tejedor N, Bacelis J, Ebejer JL, Zhao H, Davies GE, Ehli EA, Evans DM, Fedko IO, Guxens M, Hottenga JJ, Hudziak JJ, Jugessur A, Kemp JP, Krapohl E, Martin NG, Murcia M, Myhre R, Ormel J, Ring SM, Standl M, Stergiakouli E, Stoltenberg C, Thiering E, Timpson NJ, Trzaskowski M, van der Most PJ, Wang C; EArly Genetics and Lifecourse Epidemiology (EAGLE) Consortium; Psychiatric Genomics Consortium ADHD Working Group, Nyholt DR, Medland SE, Neale B, Jacobsson B, Sunyer J, Hartman CA, Whitehouse AJO, Pennell CE, Heinrich J, Plomin R, Smith GD, Tiemeier H, Posthuma D, Boomsma DI. A Genome-Wide Association Meta-Analysis of Attention-Deficit/Hyperactivity Disorder Symptoms in Population-Based Pediatric Cohorts. J Am Acad Child Adolesc Psychiatry. 2016 Oct;55(10):896-905.

If you are interested in joining a scientific study see for example:

https://www.ru.nl/donders/vm-site/proefpersonen/engelse-versies-centers/participants/donders-centre-cognition-en/

or

https://www.impactadhdgenomics.com/patienten/nl/deelnemen (Dutch only)

Cocaine dependence is in part genetic, and it shares genetic risk factors with other psychiatric conditions and personality traits.

Cocaine is one of the most used illicit drugs worldwide and its abuse produces serious health problems. In Europe, around 5.2% of adults (from 15 to 64 years old) have tried cocaine, but only 20% will develop addiction. Why? Genetics is part of the answer. Cocaine dependence is a complex psychiatric disorder that results from the interaction of both environmental and genetic risk factors. Twin and adoption studies indicate that genetic alterations contribute substantially to cocaine dependence susceptibility, which has an estimated genetic load (heritability) as high as 65-79%. Although many studies with focus on candidate genes have been performed, only a few risk variants for cocaine dependence have been identified and replicated so far.

https://www.
flickr.com/photos/30478819@N08/24042216187

In this study we performed a meta-analysis of genome-wide association studies (GWAS) of cocaine dependence using more than 6,000 European ancestry individuals. This approach allowed us to inspect a huge number of genetic variants distributed all along the genome that are common in the general population. We identified a gene (HIST1H2BD) associated with cocaine dependence that is located in a region on chromosome 6 enriched in genes that encode histones, proteins that combine with DNA, protecting it and contributing to the activation (or inhibition) of genes. Some of these genes have previously been associated with schizophrenia.

Several studies have shown that substance use disorders (SUD), and especially cocaine dependence, co-occur in patients with other psychiatric disorders and personality traits. Such comorbidity is associated with increased severity for all disorders, although it is unclear whether this relationship is causal or the result of shared genetic and/or environmental risk factors. We calculated the shared genetics (genetic correlation) between cocaine dependence and six comorbid conditions. For the first time we found significant genetic correlation with attention deficit/hyperactivity disorder (ADHD), schizophrenia, major depression and risk- taking behavior. We also used another approach (polygenic risk score analysis, PRS) to prove that all tested comorbid conditions are associated with cocaine dependence status, suggesting that cocaine dependence is more likely in individuals that carry genetic risk factors for the tested conditions than in those that do not.

To our knowledge, this is the largest reported GWAS meta-analysis in European-ancestry individuals with cocaine dependence. We identified suggestive risk factors for the disorder in several genomic regions and found evidence for shared genetic risk factors between cocaine dependence and several co-occurring psychiatric traits. However, the size of the sample is still limited and further studies are needed to confirm our results.

Read more at:

Judit Cabana-Domínguez and Bru Cormand

Judit Cabana Domínguez is a Postdoctoral researcher at the Genetics, Microbiology and Statistics Department at the University of Barcelona.

Bru Cormand is Full Professor of Genetics at the Genetics, Microbiology and Statistics Department at the University of Barcelona.

ADHD and autism – similar or different disorders?

Have you ever thought that ADHD and autism could perhaps be the same disorder? – Or have you thought that they are way too different, two different planets in the psychiatric universe? Researchers do not agree on this. We know that both ADHD and autism are neurodevelopmental conditions with onset in childhood and that they share some common genetic factors, however, they appear with quite different phenotypical characteristics. We also know that people with ADHD or autism have an increased risk of getting other psychiatric disorders, so-called comorbidities, and smaller studies have shown that individuals with ADHD or autism get different psychiatric disorders, and at a different degree.

How can we utilize this knowledge about different psychiatric comorbidities between ADHD and autism? How can we get closer to an answer to this question; are ADHD and autism similar or different conditions? By using large datasets; unique population-based registries in Norway, we wanted to compare the pattern of psychiatric comorbidities in adults diagnosed with ADHD, autism or both disorders. In addition, we wanted to compare the pattern of genetic correlations between ADHD and autism for the same psychiatric traits, and for this, we exploited summary statistics from relevant genome-wide association studies.

In the registries, we identified 39,000 adults with ADHD, 7,500 adults with autism and 1,500 with both ADHD and autism. We compared these three groups with the remaining population of 1.6 million Norwegian adult inhabitants without either ADHD or autism. The psychiatric disorders we studied were anxiety, bipolar, depression, personality disorder, schizophrenia spectrum (schizophrenia) and substance use disorders (SUD).

Interestingly, we found different patterns of psychiatric comorbidities between ADHD and autism, overall and when stratified by sex (Fig.1). These patterns were also reflected in the genetic correlations, however, only two of the six traits showed a significant difference between ADHD and autism (Fig.2).

Figure 1 - Solberg et al. 2019
Figure 1. Prevalence ratios of psychiatric disorders in adults with ADHD, autism or both ADHD and autism, relative to the remaining population, by sex. As can be seen in the figure, schizophrenia is more frequent in autism or ADHD+autism than ADHD alone, while the reverse is true for substance use disorder. There are also significant differences in prevalence between men and women. Figure from Solberg et al. 2019, CC-BY-NC-ND.

Figure 2. Left: The pattern of prevalence ratios of psychiatric comorbidity in adults with ADHD or autism observed in this study (ADHD; n=38,636, autism; n=7,528). Right: genetic correlations (rg) calculated from genome wide association studies. Psychiatric conditions are highly prevalent in both ADHD and ASD, with schizophrenia being most prevalent in ASD and antisocial personality disorders in ADHD. Genetic correlations are also high with both disorders, with especially high correlations between ADHD and alcohol dependence, smoking behavior and anti-social behavoiur. Major depressive disorder has high genetic correlations with both ADHD and autism. Figure from Solberg et al. 2019, CC-BY-NC-ND.

The most marked differences were found for schizophrenia and SUD. Schizophrenia was more common in adults with autism, and SUD more common in adults with ADHD. Associations with anxiety, bipolar and personality disorders were strongest in adults with both ADHD and autism, indicating that this group of adults suffers from more severe impairments than those with ADHD or autism only. The sex differences in risk of psychiatric comorbidities were also different among adults with ADHD and ASD.

In conclusion, our study provides robust and representative estimates of differences in psychiatric comorbidities between adults diagnosed with ADHD, autism or both ADHD and autism. With the results from analyses of genetic correlations, this finding contributes to our understanding of these disorders as being distinct neurodevelopmental disorders with partly shared common genetic factors.

Clinicians should be aware of the overall high level of comorbidity in adults with ADHD, autism or both ADHD and autism, and the distinct patterns of psychiatric comorbidities to detect these conditions and offer early treatment. It is also important to take into account the observed sex differences. The distinct comorbidity patterns may further provide information to etiologic research on biological mechanisms underlying the pathophysiology of these neurodevelopmental disorders.

This study was done at Stiftelsen Kristian Gerhard Jebsen Centre for Neuropsychiatric disorders, University of Bergen, Norway, and published OnlineOpen in Biological Psychiatry, April 2019, with the title:

“Patterns of psychiatric comorbidity and genetic correlations provide new insights into differences between attention-deficit/hyperactivity disorder and autism spectrum disorder”. https://doi.org/10.1016/j.biopsych.2019.04.021

Figure 1 and 2 are re-printed by permission https://creativecommons.org/licenses/by-nc-nd/4.0/

Berit Skretting Solberg is a PhD-candidate at the Department of Biomedicine/Department of Global Health and Primary Care, University of Bergen, Norway. She is also a child- and adolescent psychiatrist/adult psychiatrist. She is affiliated with the CoCa-project, studying psychiatric comorbidities in adults with ADHD or autism, using unique population-based registries in Norway.

 

Epigenetic signature for attention-deficit/hyperactivity disorder

Attention-deficit/hyperactivity disorder (ADHD) is considered a complex disorder caused by underlying genetic and environmental risk factors. To make it even more complex, environmental factors can influence the expression of genes. This is called epigenetics.

Given the large proportion of the heritability of ADHD still to be explained, there is a growing interest in the epigenetic mechanisms that modulate gene expression. microRNAs (miRNA) are small parts in the human genome that do not code for genes, but instead regulate the expression of other genes by promoting the degradation or suppressing the translation of those target genes. miRNA therefore provide a means to integrate effects of genetic and environmental risk factors.

The human genome encodes more than 2500 different miRNAs, the majority of which are expressed in the brain. miRNAs are known to be involved in the development of the central nervous system and in many neurological processes including synaptic plasticity and synaptogenesis. Given the limited accessibility of the human brain for studying epigenetic modifications, miRNA profiling in peripheral blood cells is often used as a non-invasive proxy to study transcriptional and epigenetic biosignatures, and to identify potential clinical biomarkers for psychiatric disorders.

We recently investigated the role of microRNAs in ADHD at a molecular level, by conducting the first genome-wide integrative study of microRNA and gene expression profiles in blood of individuals with ADHD and healthy controls. We identified three miRNAs (miR-26b-5p, miR-185-5p and miR-191-5p) that have different expression levels in people with ADHD, compared to those without ADHD. When we investigated downstream miRNA-mediated mechanisms underlying the disorder this provided evidence that aberrant expression profile of these three miRNA may underlie changes in the expression of genes related with myo-inositol signaling. This mediates the biological response of a large number of hormones and neurotransmitters on target cells. We also found that these miRNAs specifically targeted genes involved in neurological disease and psychological disorders.

These findings show that epigenetic modifications through microRNAs play a role in ADHD, and provide novel insights into how these miRNA-mediated mechanisms contribute to the disorder. In the future, these miRNAs may be used as peripheral biomarkers that can be easily detected from blood, as is shown in the figure.

What´s next?

The mechanism through which miRNAs modify gene expression is complex and dynamic. Therefore, future studies are required to provide deeper insights into the epigenetic mechanisms underlying ADHD, and to identify specific molecular networks that may be crucial in the development of the disorder.

Further reading

Cristina Sánchez-Mora et al. Epigenetic signature for attention-deficit/hyperactivity disorder: identification of miR-26b-5p, miR-185-5p, and miR-191-5p as potential biomarkers in peripheral blood mononuclear cells, Neuropsychopharmacology, volume 44, pages 890–897 (2019).

https://www.nature.com/articles/s41386-018-0297-0

About the author

Cristina Sánchez-Mora is postdoctoral researcher at the Psychiatry, Mental Health and Addictions group at Vall d’Hebron Institut de Recerca (VHIR). Her research is part of the CoCA consortium that investigates comorbid conditions of ADHD

ADHD and cannabis use

It is not uncommon for individuals to suffer from two or more psychiatric disorders at the same time. The appearance of these disorders frequently follows a specific order, and one disorder may predispose to others, all of which in combination contribute to the worsening of the quality of life of the individuals who suffer them. This is usually associated with more severe symptoms and worse prognosis. In addition, making a diagnosis and applying personalized treatments becomes more challenging in this context. By investigating the genetic overlap between disorders, we gain better understanding of why the disorders frequently co-occur.

In mental health, substance use disorders often appear when there is another mental condition. This is the case for attention-deficit/hyperactivity disorder (ADHD) and substance use disorder, where individuals with ADHD are more likely to use drugs during their lifetime than individuals who do not have ADHD. In particular, cannabis is the most commonly used substance among individuals with ADHD, which can also lead to the use of other drugs and to the worsening of their symptoms. ADHD is one of the most common neurodevelopmental disorders, affecting around 5% of children and 2.5% of adults, and is characterized by attention deficit, hyperactivity and impulsivity. Both ADHD and cannabis use are conditions determined partly by environmental factors but where genetic factors also play an important role.

We recently investigated the genetic overlap between ADHD and cannabis use, and found that the increased probability of using cannabis in individuals with ADHD, can be, in part, due to a common genetic background between the two conditions. We identified four genetic regions involved in increasing the risk of both ADHD and cannabis use, which could point to potential druggable targets and help to develop new treatments. In addition, we confirmed a causal link between ADHD and cannabis use, and estimated that individuals with ADHD are almost 8 times more likely to consume cannabis than those who do not have ADHD. This evidence goes in line with a temporal relationship, where the ADHD appears in childhood and the use of cannabis during adolescent or adulthood. This suggests that having ADHD increases the risk of using cannabis, and not vice versa.

This research has only been possible thanks to large international collaborations by the Psychiatric Genomics Consortium (PGC), iPSYCH, and the International Cannabis Consortium (ICC), where the genomes of around 85 000 individuals were analysed.

Overall, these results support the idea that psychiatric disorders are not independent, but have a common genetic background, and share biological pathways, which put some individuals at higher risk than others. This will help to overcome the stigma of addiction and mental disorders. In addition, the potential of using genetic information to identify individuals at higher risk will have a strong impact on prevention, early detection and treatment.

Further reading

María Soler Artigas et al. Attention-deficit/hyperactivity disorder and lifetime cannabis use: genetic overlap and causality, Molecular Psychiatry (2019) – https://www.nature.com/articles/s41380-018-0339-3

About the author

María Soler Artigas is postdoctoral researcher at the Psychiatry, Mental Health and Addictions group at Vall d’Hebron Institut de Recerca (VHIR), also part of the Biomedical Research Networking Center in Mental Health (CIBERSAM). Her research is part of the CoCA consortium that investigates comorbid conditions of ADHD.