Aid for ADHD individuals personal needs, right when it is needed
You might know the tenet of “just in time” from economics. It means bringing goods to a recipient at the right time, exactly when it is needed. But what if we could apply this also to treatments or interventions for mental health problems? Can we provide small interventions at exactly the time when a person needs it? And can this provide us with more insights into what triggers ADHD symptoms?
Just in time economics is possible and required because of dynamic processes in economical markets. Dynamic processes are also present in mental disorders. Attention-deficit/hyperactivity disorder (ADHD) is a condition that is dynamic by nature. Core symptoms of ADHD are hyperactivity, inattention and impulsivity, and many individuals also experience emotion dysregulation. In the past, research focused mainly on how patients with ADHD differ from healthy individuals or other disorders. But what about ADHD individuals’ context or other dynamics, that may trigger symptoms? For this we need to look much more closely at the dynamics of an individual’s life.
Ambulatory Assessment: collecting data in real time and in real life
The Ambulatory Assessment method makes use of smartphones, accelerometers, GPS-tracking and geolocation approaches to track how you feel, what you do, where you go, who you meet, what you eat, and how you’re body is doing (i.e. your heartrate) (1). This method has improved a lot over years and technical progress makes it more and more feasible to investigate associations between variables over time and how these variables interact in everyday life. This provides researchers with new insights into many different factors that can influence a person’s symptoms and mental health.
The importance of context
The Ambulatory Assessment method also enables to better differentiate between real and deceptive associations. Imagine, a person is asked for hyperactivity in the morning at 9:00 am, noon and evening and it turns out that the person is very hyperactive in the morning. Your conclusion may be that this individual is more hyperactive in the morning, but you don’t know why. If you know more about this person’s context, it may turn out that every day at 08:30 am the person drinks two cups of coffee which causes the measured hyperactivity at 9:00 am. This gives you much more insight into what triggers his or her symptoms.
Another example: imagine that a symptom always occurs in a special situation, at a special place or with a special person (e.g., after trying to catch the connecting train every morning at the same time). If you always ask for symptoms at the same time of day, you may miss this special occasion because it always occurs at another time. This way, you may miss out on important associations between symptoms and situations, places or persons. It is therefore very important to measure symptoms at random time points, or when they are triggered by certain events. This gives you much more informative data.
Cause or consequence?
However, the Ambulatory Assessment method is not yet perfect. The main limitation is that it’s difficult to determine what causes what (2). For example, do fluctuations in mood in patients with ADHD lead to impulsivity or hyperactivity? Or does mood change as a consequence of impulsivity? Another example: Do I feel better after exercising or do I move more because I feel good? Researchers recently found evidence for both directions (3,4).
Towards developing just in time treatment
Let’s think about the next step. A better understanding of causes and consequences and associations between symptoms and environmental triggers in an individual’s real world, creates the basis for just-in-time interventions (6). The idea is to react on dynamics in how symptoms are experienced or triggered, by timing the interventions exactly when it is needed. This could be realized by smartphones or wearables, which are already implemented in Ambulatory Assessment research. These devices are then not only used to collect data in real-time, but also to give feedback and provide interventions to reduce or prevent symptoms.
Exercise intervention through a smartphone app
The antecedent of just-in-time-adaptive-interventions are ecological momentary interventions (EMIs). One example of such an EMI or electronic diary intervention with a smartphone and an accelerometer for individuals with ADHD is the PROUD trial of the European funded project CoCA (5). In this trial, individuals with ADHD received a smartphone and a kind of sports watch (that measures your movement) that together measured their behavior, activity, daylight exposure, mood and symptoms during the day. The smartphone also provided an intervention, either in the form of sports exercises or in the form of bright light therapy. During the exercise intervention, participants are given instructions to perform exercises via a smartphone app by which they are guided through their training by weekly goals, motivational reminders, and training videos. Every evening, they get feedback on performed intervention parameters from that day in real time. This system was not yet so developed that it also changed the type or timing of the intervention to the data that was collected during the day, but that would be the next step to create a just-in-time intervention.
In conclusion, it is important to investigate the associations between ADHD individuals’ symptoms and their personal everyday lives. This helps researchers to understand the dynamic processes behind ADHD and to create tailor-made interventions that can easily be integrated in the everyday life of these individuals. A physician cannot support a patient throughout every step he/she takes, but there are already devices that can be supportive around the clock and technical innovations will surely pave the way to improve personal just-in-time interventions in the near future.
This blog was written by Elena Koch. She is a PhD student at Karlsruhe Institute for Technology in Germany.
References
1. Reichert M, Giurgiu M, Koch ED, Wieland LM, Lautenbach S, Neubauer AB, Haaren-Mack B v., Schilling R, Timm I, Notthoff N, Marzi I, Hill H, Brüßler S, Eckert T, Fiedler J, Burchartz A, Anedda B, Wunsch K, Gerber M, Jekauc D, Woll A, Dunton GF, Kanning M, Nigg CR, Ebner-Priemer U, Liao Y. Ambulatory assessment for physical activity research: State of the science, best practices and future directions. Psychology of Sport and Exercise. 2020;50101742. doi:10.1016/j.psychsport.2020.101742
2. Reichert M, Schlegel S, Jagau F, Timm I, Wieland L, Ebner-Priemer UW, Hartmann A, Zeeck A. Mood and Dysfunctional Cognitions Constitute Within-Subject Antecedents and Consequences of Exercise in Eating Disorders. Psychother Psychosom. 2020;89(2):119–21. doi:10.1159/000504061
3. Koch ED, Tost H, Braun U, Gan G, Giurgiu M, Reinhard I, Zipf A, Meyer-Lindenberg A, Ebner-Priemer UW, Reichert M. Relationships between incidental physical activity, exercise, and sports with subsequent mood in adolescents. Scand J Med Sci Sports. 2020;30(11):2234–50.
4. Koch ED, Tost H, Braun U, Gan G, Giurgiu M, Reinhard I, Zipf A, Meyer-Lindenberg A, Ebner-Priemer UW, Reichert M. Mood Dimensions Show Distinct Within-Subject Associations With Non-exercise Activity in Adolescents: An Ambulatory Assessment Study. Front Psychol. 2018;9268. doi:10.3389/fpsyg.2018.00268
5. Mayer JS, Hees K, Medda J, Grimm O, Asherson P, Bellina M, Colla M, Ibáñez P, Koch E, Martinez-Nicolas A, Muntaner-Mas A, Rommel A, Rommelse N, Ruiter S de, Ebner-Priemer UW, Kieser M, Ortega FB, Thome J, Buitelaar JK, Kuntsi J, Ramos-Quiroga JA, Reif A, Freitag CM. Bright light therapy versus physical exercise to prevent co-morbid depression and obesity in adolescents and young adults with attention-deficit / hyperactivity disorder: study protocol for a randomized controlled trial. Trials. 2018;19(1):140. doi:10.1186/s13063-017-2426-1
6. Koch, ED, Moukhtarian, TR, Skirrow, C, Bozhilova, N, Ashersn, P, Ebner-Priemer, UW. Using e-diaries to investigate ADHD – State-of-the-art and the promising feature of just-in-time-adaptive interventions. Neuroscience & Biobehavioral Reviews. 2021. https://doi.org/10.1016/j.neubiorev.2021.06.002