PROUD study interview with participants, part 3: Managing ADHD with light

grass-2597123_1920

This month we interviewed a 22 year old female college student who took part in the CoCA-PROUD study in Frankfurt. I would like to thank her for sharing her valuable experience as a participant in our study and what is it like to live with ADHD.

What is it like to live with ADHD?

I’m usually very chaotic and it’s difficult for me to keep organized and remember appointments. I get distracted quickly and it’s hard to concentrate. My fellow students and friends find it sometimes annoying. I had difficulty with concentration and organization even in elementary school and not much has changed since then. But today I do have conscious strategies to organize myself a bit better. That helps in some situations.

I was only diagnosed with ADS 1.5 years ago at the age of 20. I was examined in elementary school because of similar problems and my parents decided me to take part in a psychological therapy but a diagnosis wasn’t given. On the one hand it was a relief when I got diagnosed, because I always thought I have problems in these things. But on the other hand, it also feels strange to have a diagnosis. Nobody really knows about it except my parents, my boy-friend and some best friends. I find it uncomfortable to talk about and I don’t want everyone to know that I have problems in these things, because so many people have prejudices.

For 1.5 years I’ve been taking medicine regularly. In some situations, I can tell that it helps, like to be able to concentrate better. In other situations, the effect isn’t as clear. But my boy-friend notices immediately if I haven’t taken my medication.

For me the positive side of ADS is that I often have more ideas than other people do and I also react more emotionally, for example when I’m happy. But still, on the medication, however, I also notice that most of the time I’m not as emotional as I normally would be.

Light therapy to manage ADHD

I saw the flyer that was posted on the homepage of the Department of Child and Adolescent Psychiatry at the Goethe University Hospital Frankfurt. I was searching online about research on ADHD because I was interested in research on ADHD in general and I wanted to learn more about the types of interventions investigated in the clinical study. Actually, I was most interested in the light therapy. I had read about it before and wanted to give it a try. So naturally I was excited when they told me that I was assigned to the light therapy group. I did the light therapy for 10 weeks starting in June 2018. They gave me a specific lamp and a smartphone with an app. I also had to wear the light sensor day and night, but it didn’t bother me. At work I wasn’t allowed to wear the sensor. The lamp was easy to use, however the light therapy needed to be done very early in the morning before I went to work. During the week, it was sometimes hard to find the time to do the light therapy early in the morning before heading to work. It was really hard to get up that early on Saturdays for it. That’s something that I didn’t like about the therapy. The app was easy to use. The feedback didn’t always work right, but that wasn’t important for me. During the 10 weeks of light therapy I felt much better in the mornings; it was easier to start the day and to get into the day. So in that way it was very helpful for me. I did not recognize any effects on my difficulties to concentrate or being organized. I would definitely recommend to participate in this study and to use the light. I am planning to buy one and to do light therapy on my own.

The interview was done by Jutta Mayer. She is a psychologist and psychotherapist at the University Hospital Frankfurt and the clinical project manager of the PROUD study which is part of the CoCA project (www.coca-project.eu).

 

MindChamp: Mindfulness for Children with ADHD and Mindful Parenting

Mindfulness for children with ADHD and their parents. Is that an alternative to medicine? Misha Beliën talks to Corina Greven about this question. She is project leader of MindChamp, an innovative study into the effectiveness of mindfulness as an addition to care-as-usual for ADHD.

Video originally posted on: http://www.bodhitv.nl

Researchers have found the first risk genes for ADHD

Our genes are very important for the development of mental disorders – including ADHD, where genetic factors capture up to 75% of the risk. Until now, the search for these genes had yet to deliver clear results.   In the 1990s, many of us were searching for genes that increased the risk for ADHD because we know from twin studies that ADHD had a robust genetic component.   Because I realized that solving this problem required many DNA samples from people with and without ADHD, I created the ADHD Molecular Genetics Network, funded by the US NIMH.  We later joined forces with the Psychiatric Genomics Consortium (PTC) and the Danish iPSYCH group, which had access to many samples.

The result is a study of over 20,000 people with ADHD and 35,000 who do not suffer from it – finding twelve locations (loci) where people with a particular genetic variant have an increased risk of ADHD compared to those who do not have the variant.  The results of the study have just been published in the scientific journal Nature Genetics, https://www.nature.com/articles/s41588-018-0269-7.

These genetic discoveries provide new insights into the biology behind developing ADHD. For example, some of the genes have significance for how brain cells communicate with each other, while others are important for cognitive functions such as language and learning.

We study used genomewide association study (GWAS) methodology because it allowed us to discover genetic loci anywhere on the genome.  The method assays DNA variants throughout the genome and determines which variants are more common among ADHD vs. control participants.  It also allowed for the discovery of loci having very small effects.  That feature was essential because prior work suggested that, except for very rare cases, ADHD risk loci would individually have small effects.

The main findings are:

  1. A) we found 12 loci on the genome that we can be certain harbor DNA risk variants for ADHD. None of these loci were traditional ‘candidate genes’ for ADHD, i.e., genes involved in regulating neurotransmission systems that are affected by ADHD medications. Instead, these genes seem to be involved in the development of brain circuits.
  2. B) we found a significant polygenic etiology in our data, which means that there must be many loci (perhaps thousands) having variants that increase risk for ADHD. We will need to collect a much larger sample to find out which specific loci are involved;

We also compared the new results with those from a genetic study of continuous measures of ADHD symptoms in the general population. We found that the same genetic variants that give rise to an ADHD diagnosis also affect inattention and impulsivity in the general population.  This supports prior clinical research suggesting that, like hypertension and hypercholesteremia, ADHD is a continuous trait in the population.  These genetic data now show that the genetic susceptibility to ADHD is also a quantitative trait comprised of many, perhaps thousands, of DNA variants

The study also examined the genetic overlap with other disorders and traits in analyses that ask the questions:  Do genetic risk variants for ADHD increase or decrease the likelihood a person will express other traits and disorders.   These analyses found a strong negative genetic correlation between ADHD and education. This tell us that many of the genetic variants which increase the risk for ADHD also make it more likely that persons will perform poorly in educational settings. The study also found a positive correlation between ADHD and obesity, increased BMI and type-2 diabetes, which is to say that variants that increase the risk of ADHD also increase the risk of overweight and type-2 diabetes in the population.

This work has laid the foundation for future work that will clarify how genetic risks combine with environmental risks to cause ADHD.  When the pieces of that puzzle come together, researchers will be able to improve the diagnosis and treatment of ADHD.

Stephen Faraone is distinguished Professor of Psychiatry and of Neuroscience and Physiology at SUNY Upstate Medical University and is working on the H2020-funded project CoCA. 

The first risk genes for ADHD has been identified

A major international collaboration headed by researchers from the Danish iPSYCH project, the Broad Institute of Harvard and MIT, Massachusetts General Hospital, SUNY Upstate Medical University, and the Psychiatric Genomics Consortium has for the first time identified genetic variants which increase the risk of ADHD. The new findings provide a completely new insight into the biology behind ADHD.

 

Risk variants for  ADHD
Our genes are very important for the development of ADHD, where genetic factors capture up to 75% of the risk. Until now, the search for locations in the genome with genetic variation that is involved in ADHD has not delivered clear results. A large genetic study performed by researchers from the Psychiatric Genomics Consortium have compared genetic variation across the entire genome for over 20,000 people with ADHD and 35,000 who do not suffer from it – finding twelve locations where people with a particular genetic variant have an increased risk of ADHD compared to those who do not have the variant.

The special about the new study is the large amount of data. The search for genetic risk variants for ADHD has spanned decades but without obtaining robust results. This time the study really expanded the number of study subjects substantially, increasing the power to obtain conclusive results.

The results of the study have just been published in the scientific journal Nature Genetics.

The new genetic discoveries provide new insights into the biology behind developing ADHD. For example, some of the genes have significance for how brain cells communicate with each other, while others are important for cognitive functions such as language and learning. Overall, the results show that the risk variants typically regulate how much a gene is expressed, and that the genes affected are primarily expressed in the brain.

The same genes affect impulsivity in healthy people
In the study, the researchers have also compared the new results with those from a genetic study of continuous measures of ADHD behaviours in the general population. The researchers discovered that the same genetic variants that give rise to an ADHD diagnosis also affect inattention and impulsivity in the general population. This result tells us, that the risk variants are  widespread in the population. The more risk variants a person has, the greater the tendency to have ADHD-like characteristics will be as well as the risk of developing ADHD.
The study also evaluated the genetic overlap with other diseases and traits, and a strong negative genetic correlation between ADHD and education was identified. This means that on average genetic variants which increase the risk of ADHD also influence performance in the education system negatively for people in the general population who carry these variants without having ADHD.

Conversely, the study found a positive correlation between ADHD and obesity, increased BMI and type-2 diabetes, which is to say that variants that increase the risk of ADHD also increase the risk of overweight and type-2 diabetes in the population.

What´s next?
The new findings mean that the scientists now – after many years of research – finally have robust genetic findings that can inform about the underlying biology and what role genetics plays in the diseases and traits that are often cooccurring with ADHD. In addition, the study is an important foundation for further research into ADHD. Studies can now be targeted, to focus on the genes and biological mechanisms identified in the new study in order to achieve a deeper understanding of how the genetic risk variants affect the development of ADHD with the aim of ultimately providing better help for people with ADHD.


References:

Demontis and Walters et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics, 2018. https://doi.org/10.1038/s41588-018-0269-7

https://www.nature.com/articles/s41588-018-0269-7

Beneficial effects of high-intensity exercise on the attentive brain

Physical exercise and the brain

Emerging evidence from research studies suggests that physical activity can improve attention, brain function and well-being. In an attempt to understand more about the beneficial effects of high-intensity exercise, we recently conducted a study on the effect of PHysical Activity on Brain function (PHAB study). We examined whether cycling at a high intensity for 20 minutes would improve brain-activity (electroencephalography; EEG) measures of attention and focus during computerised tasks. We also aimed to investigate whether some individuals, for example those who are physically fit, would benefit more or less from exercise.

PHAb setup2

Does high-intensity exercise improve attention?

Participants (young adult men) were invited to our research centre, where they completed computer tasks while we recorded their brain activity. In the first task, they were asked to respond to letter ‘X’ following an ‘O’, but not to respond if another letter was presented after an ‘O’. Participants performed the task both before and after exercise and rest, and so we were able to test if their brain activity changed after exercise.

Task

We found that an attention measure called the “P3” was enhanced after exercise but not after rest. This suggests that the intense exercise session led to improvements in their attention. These improvements in attention from exercise were equal across participants, regardless of how physically fit they were.

The participants also performed two subsequent computer tasks, but we did not find improvements after exercise in these tasks. We believe that the beneficial effects of exercise may have worn off by the time that they performed these tasks.

These results suggest that intense exercise may improve attention. Exercise may therefore be beneficial for individuals with impairing levels of inattentive and restless behaviours, such as ADHD. This is currently being tested in the clinical trial CoCA (https://mind-the-gap.live/2018/10/09/10-weeks-of-physical-exercise-or-light-therapy/) (https://mind-the-gap.live/2017/02/18/coca-proud-trial-ready-to-roll/).

Read more about our study results at:

https://www.sciencedirect.com/science/article/pii/S0166432818308490

If you have any questions

Please feel free to contact Professor Jonna Kuntsi (jonna.kuntsi@kcl.ac.uk). The project was supported by a Medical Research Council studentship to Ebba Du Rietz.

Phelps

 

Ebba Du Rietz and Jonna Kuntsi

ADHD in ancient Greece?

One often hears that the first written description of ADHD stems from the book of the German physician Melchior Adam Weikard “Der Philosophische Arzt” (translated: “The philosophical doctor”) published in 1775. Other well-known old descriptions include for example George F. Still’s description from 1902 published in the Lancet, and Alexander Crichton’s description from 1798. However, this year a Brazilian research group published a report where they claim that the first know description of ADHD, or at least ADHD-like behavior, might be more than 2000 years old!*

The philosopher Theophrastus was a former pupil of Plato and Aristotle who lived in ancient Greece. In approximately 319 years BC he wrote “The Characters”, which essentially is a collection of texts that describes the behavior of 30 stereotypical characters where each character is devoted 10-15 phrases. One of these characters, “the obtuse man”, is an adult man who is described to have both inattention symptoms (forgets important appointments) and hyperactivity symptoms (tires out his children while playing). In addition, “the obtuse man” also has sleep problems and has problems with planning, which both are more common among individuals with ADHD than among those without.

Despite that it can be argued that the behavior of the “the obtuse man” is not a perfect description of typical ADHD, it is still interesting that the oldest known description of ADHD-like behavior describes these symptoms in an adult, in contrast to the later descriptions of ADHD-like behavior that are about children with these symptoms. Moreover, Theophrastus’ more than 2000-year-old text further supports that ADHD (and other psychiatric disorders) has been a part of human life as long as we have been humans.

*Victor MM, Bruna SdS, Kappel DB, Bau CH, Grevet EH. Attention-deficit hyperactivity disorder in ancient Greece: The Obtuse Man of Theophrastus. Aust N Z J Psychiatry. Jun 2018;52(6):509-513.

Tor-Arne Hegvik is medical doctor who is doing research on ADHD and its co-morbidities as a part of the CoCA project: https://coca-project.eu/

Picture from https://pixabay.com

ADHD Is A Risk Factor For Type Two Diabetes And High Blood Pressure, As Well As Other Psychiatric Disorders

All Swedish residents have their health records tracked through unique personal identity numbers. That makes it possible to identify psychiatric and medical disorders with great accuracy across an entire population, in this case encompassing more than five and a half million adults aged 18 to 64. A subgroup of more than 1.6 million persons between the ages of 50 and 64 enabled a separate examination of disorders in older adults.

Slightly over one percent of the entire population (about 61,000) were diagnosed with ADHD at some point as an adult. Individuals with ADHD were nine times as likely to suffer from depression as were adults not diagnosed with ADHD. They were also more than nine times as likely to suffer from anxiety or a substance use disorder, and twenty times as likely to be diagnosed with bipolar disorder.  These findings are very consistent with reports from clinical samples in the USA and Europe.

Adults with ADHD also had elevated levels of metabolic disorders, being almost twice as likely to have high blood pressure, and more than twice as likely to have type 2 diabetes. Persons with ADHD but without psychiatric comorbidities were also almost twice as likely to have high blood pressure, and more than twice as likely to have type 2 diabetes.

Similar patterns were found in men and women with ADHD, although comorbid depression, bipolar disorder, and anxiety were moderately more prevalent in females than in males, whereas substance use disorder, type 2 diabetes, and hypertension were more prevalent in males than in females.

ADHD was less than a third as prevalent in the over-50 population as in the general adult population. Nevertheless, individuals in this older group with ADHD were twelve times as likely to suffer from depression, anxiety, or substance use disorders, and more than 23 times as likely to be diagnosed with bipolar disorder as their non-ADHD peers. They were also 63% more likely to have high blood pressure, and 72% more likely to have type 2 diabetes.

The authors noted, “Although the mechanisms underlying these associations are not well understood, we know from both epidemiologic and molecular genetic studies that a shared genetic predisposition might account for the co­existence of two or more psychiatric conditions. In addition, individuals with ADHD may experience increased difficulties as the demands of life increase, which may contribute to the development of depression and anxiety.” As for associations with hypertension and type 2 diabetes, these “might reflect health ­risk behaviors among adult patients with comorbid ADHD in addition to a shared biological substrate. As others have noted, inattention, disinhibition, and disorganization associated with ADHD could make it difficult for patients to adhere to treatment regimens for metabolic disorders.” They concluded that “Clinicians should remain vigilant for a wide range of psychiatric and metabolic problems in ADHD affected adults of all ages and both sexes.”

Stephen Faraone is distinguished Professor of Psychiatry and of Neuroscience and Physiology at SUNY Upstate Medical University and is working on the H2020-funded project CoCA. 

REFERENCES

Qi Chen, Catharina A. Hartman, Jan Haavik, Jaanus Harro, Kari Klungsøyr, Tor­Arne Hegvik, Rob Wanders, Cæcilie Ottosen, Søren Dalsgaard, Stephen V. Faraone, Henrik Larsson, “Common psychiatric and metabolic comorbidity of adult attention-deficit/hyperactivity disorder: A population-based cross-sectional study,” PLoS ONE (2018), 13(9): e0204516. https://doi.org/10.1371/journal.pone.0204516.