The notorious evening chronotype and my master’s thesis

Almost every person, healthy or not, suffers from occasional problems with sleep and circadian rhythm. In the modern days of 24/7 smartphone use and transcontinental flights, our internal body clock is having a hard time adjusting to the external cues. For the persons suffering from mental health issues, their impaired sleep cycle can be one of the cornerstone problems of daily living. Sleep problems have been confirmed to be a first symptom, consequence, or even a cause of such psychiatric conditions as major depression, bipolar disorder, ADHD, autism, substance abuse, and even aggressive behaviour. Their strong relations, however, have not been studied systematically and broadly just yet.

Why study the circadian rhythm?

Circadian rhythm is our inner clock that regulates a lot of important processes in the human body, including the sleep/wake cycle, the release of hormones and even the way we process medicines. This clock is run by the brain region called the hypothalamus, which piles up a protein called CLK (referring to “clock”), during the daytime. CLK, in turn, activates the genes which make us stay awake, but also gradually increases the creation of another protein called PER. When we have a lot PER, it turns off CLK production and makes us ready to sleep. As CLK is getting lower, this causes a decrease in PER, so that the process starts again with elevating CLK waking us up. This cycle happens at around 24-hour intervals and is greatly influenced by so-called zeitgebers, or time-givers, like light, food, noise and temperature. When our retina neurons catch light waves, the suprachiasmatic nucleus in our brain stops the production of the hormone called melatonin that induces sleep and starts producing noradrenaline and vasopressin instead to wake us. This is the exact reason why you cannot fall asleep after watching a movie at night.

Figure 1. The smart protein CLK wakes us up and its friend PER gets us to sleep.

Sometimes our body clock fails to function, as in the case of jetlag when we feel bad after changing a time zone or social jetlag when we have to start work early at 8 am. It can go as far as a circadian rhythm disorder meaning you have either a delay or advancement of sleep phases or an irregular or even non-24-hour daily activities preference. However, in the general population, a small variation in the rhythm is quite normal and is usually referred to as a chronotype. It defines your preference of when to go to sleep and do your daily activities and is divided into 3 distinct versions. The radical points of these variations include a morning chronotype, or “larks”, who go somewhat 2-3 hours ahead of the balanced rhythm, and an evening chronotype, or “owls”, who are a little delayed. The larks feel and function better during the first half of the day and go to bed rather early, while the owls prefer to work in the evenings and go to bed and wake up naturally late. The third chronotype is the in-between, balanced version of these two.

Figure 2. The ‘owls’ seem to have questionable personalities and suffer from psychiatric conditions more often!

What’s my study about?

Previous research has shown that many psychopathologies are linked to an evening circadian preference. For my master thesis research, I am investigating whether we can identify specific profiles in sleep and circadian rhythm problems that are linked to specific mental health problems. There was even a curious study where researchers linked the Dark Triad personalities, which include people with tendencies for manipulation, lack of empathy, and narcissism, to the evening chronotype. Maybe this leaves some evidence for the famous quote that “evil does not rest”. However, there’s a great variation in sleep duration and perceived quality of sleep in patients with various diseases. We hope to divide such persons into more or less accurate groups with a sleep profile that would predict and aid the correct diagnosis of one or the other mental health condition.

The psychopathologies are included in our study as so-called dimensions, which look at each psychiatric syndrome not as with a norm/pathology cut-off but rather as a continuum of symptoms severity. This approach allows us to see if the sleep/circadian profile we identify refers to mental health in general or can be a distinguished part of a certain psychiatric condition. It might be that all dimensions, like depression and autistic spectrum disorders, have an evening chronotype and some non-specific sleep problems. Alternatively, we might find out that a person with symptoms of depression would sleep more or less than average and go to bed later, whereas a person with anxiety would go to sleep later as well but wake up at night very often despite an average summed up sleep duration.

The circadian rhythm changes throughout a lifetime from an early to an evening chronotype towards adolescence and then gradually shift back to the earlier preference with older age. Across the whole lifespan people constantly face varying quality of night sleep. Moreover, each psychiatric condition has a particular age of onset and sometimes changes its character with time. These are the reasons why our study will also look at how the sleep/circadian profiles change within the development phases from children (4-12 years) to adolescents (13-18) to adults (19-64) to the elderly (≥65) and if they affect males and females differently.

Why would it matter?

Should we discover distinct links between the profiles of sleep/circadian problems and certain conditions, other studies can then look into whether these profiles could be the reasons behind developing a mental health condition. It’d be interesting to finally learn what is a chicken and an egg in each profile-disease relation. For instance, should we really treat ADHD patients with melatonin and bright-light lamps instead of stimulants?

Figure 3. Maybe if we adopt a typical cat’s lifestyle, we get less mental health problems. 🙂

Dina Sarsembayeva is a neurologist and a research master’s student at the University of Groningen. She is using the data from the CoCa project to learn if the chronotypes and sleep problems can be turned into profiles to predict specific psychiatric conditions.

Further reading

  1. Walker, W. H., Walton, J. C., DeVries, A. C. & Nelson, R. J. Circadian rhythm disruption and mental health. Transl. Psychiatry 10, (2020).
  2. Logan, R. W. & McClung, C. A. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nature Reviews Neuroscience vol. 20 49–65 (2019).
  3. Jones, S. G. & Benca, R. M. Circadian disruption in psychiatric disorders. Sleep Med. Clin. 10, 481–493 (2015).
  4. Taylor, B. J. & Hasler, B. P. Chronotype and Mental Health: Recent Advances. Curr. Psychiatry Rep. 20, (2018).

The genetic architecture of the brain

Genes play a big role in determining the architecture of our brain: the way it’s folded, the thickness of the outer layer, and the way different brain areas are connected. By combining data from all over the world, a large collaboration of researchers from the ENIGMA consortium has now identified almost 200 genetic variants that are involved in this brain architecture. These findings can help us to further understand the genetics of brain disorders. 

Our genes contain the blueprint of our bodies. They contain information about how our cells function, and they determine for instance the colour of our eyes and hair, or whether we like cilantro (coriander) and bitter tastes. For some traits we know very well how they are influenced by genes. Eye color for instance is coded by only a few genes. But for many other traits such as height and personality, many different genes are involved. In addition, other (non-genetic) factors also influence these traits, such as malnutrition that can cause stunted growth.

The architecture of the brain is influenced by a large numer of genes, of which we still know very little. To investigate this, researchers combined genetic data of over 50.000 individuals with MRI-data. MRI-scans can show in detail the thickness of the outer layer of the brain, where all the brain cells are (also called the grey matter). They can also be used to measure how much this layer is folded, which gives information about the total surface of this outerlayer. This brain architecture is unique to every individual. The extent of the folds and the thickness of the outer layer have previously (in other research studies) been linked to cognitive abilities and various neurological and psychiatric disorders, such as Alzheimer’s disease, schizophrenia, depression, autism, and ADHD. It is therefore helpful to understand the genetics of this architecture, because it will help us to better understand the genetic mechanisms of these conditions.

The findings from this research study are also explained in this video:

This important research can only be done by combining a lot of data and collaborating with a large number of scientists and institutes. The ENIGMA consortium has been set upt to facilitate this kind of world-wide collaboration. The research that has now been published is the combined effort of more than 360 scientists from 296 departments across 184 different institutions and universities. They also made their results downloadable so that everyone who is interested can have a closer look.

The full publication can be found here:

See also our previous blogposts about these topics:




Prevalence and cost of ADHD comorbidity

Do individuals with ADHD more often suffer from depression, anxiety, substance abuse or severe obesity, than individuals without ADHD? Are there differences between men and women in how often this is the case? Does having ADHD in addition to one of these conditions result in higher health care costs?

The short answers to these questions, are yes, yes and yes. In the CoCA-project, researchers have investigated these questions using very large datasets including Scandinavian birth registries that contain information of millions of people. This allows us to get a better understanding of how often conditions occor, how often they occur together, and how often they occur in men vs women. Furthermore, we have investigated health insurance data from Germany to study patterns of health care costs associated with ADHD and its comorbid conditions.

The interpretation of these data is however not simple. That is why we have recorded a webinar with dr. Catharina Hartman from Groningen, The Netherlands. She is the leader of these studies and can explain what these findings can and cannot tell us. The webinar ends with implications for policy makers and health care professionals, based on these findings.

These are the world’s most high ranking experts on ADHD

Who are the most knowledgeable people about ADHD in the world? According to the website, these are professors Stephen Faraone (SUNY upstate University), Samuel Cortese (University of Southampton) and Jan Buitelaar (Radboud University Nijmegen).

What’s more, several scientists who are involved in our research consortia that investigate ADHD (i.e. Aggressotype, CoCA, IMpACT, Eat2beNICE) are top-ranked in this list of more than 30.000 possible experts in the field. These include Stephen Faraone, Jan Buitelaar, Philip Asherson, Barbara Franke, Joseph Antoni Ramos-Quiroga, Henrik Larsson, Catharina Hartman and Pieter Hoekstra. What this means is that the ADHD research that we do, and that is often reported on in this blog, is lead by the world’s top ADHD experts.

‘Our’ top-ranked ADHD experts. From left-to-right: Stephen Faraone, Jan Buitelaar, Philip Asheron, Barbara Franke, Joseph Antoni Ramos-Quiroga, Henrik Larsson, Catharina Hartman, Pieter Hoekstra.

How is an expert defined?

The website expertscape was started by John Sotos when he was looking for an expert on Parkinson’s disease to treat his uncle. This turned out to be more difficult than he thought. As John Sotos was a doctor himself, he luckily had a large network of doctors that he could contact about this. But this made him realise that people who don’t have such a network, would not be able to find out who the most knowledgeable persons are on a particular topic. He therefore created this website

The way the website works is quite simple: it searches for academic, peer-reviewed publications by a certain person on a certain topic. The more someone has published on a topic, the higher this person is ranked. Thus,  “[a]n expert is not just someone who knows a lot about a particular topic. We additionally require that the expert write about the topic, and be involved at the leading edge of investigation of the topic.”

This means that the site is actually not a very good tool to find a good doctor. As the website acknowledges “a great doctor has many important qualities beyond expert knowledge of your very specific medical condition.” However, it does mean that the website is pretty good at providing a simple overview of who has a lot of scientific knowledge about a specific topic.

So are they really experts?

In the past years I have met with most people in the top of this list, and I dare say that they are very knowledgeable indeed. Each of them has been working in the ADHD field for a considerable amount of time and has added important new insights into ADHD through research and publications. What I find most striking from this list however, is that most of these experts work together in consortia and international networks. And that is how the field really moves forward: by combining the knowledge of all these experts.

Several of these experts have also written for this blog:




This blog was written by Jeanette Mostert. Jeanette studied brain connectivity in adult ADHD during her PhD. She is now dissemination manager of the international consortia CoCA and Eat2beNICE. 


On a coalmine and an MRI scanner – Is it fun, participating in DELTA? (2)

About two and a half years ago, Dr. Emma Sprooten started the DELTA project. In DELTA, acronym for Determinants of Long-term Trajectories in ADHD, she investigates factors that contribute to the difference in (severity of) symptoms and impairment in people who were diagnosed with ADHD as a child. Previously, these adults participated in a study called NeuroImage when they were a child. We asked them if they were willing to participate one more time in this study. We will post three blogs about the project. This is blog 2.

What happens on a test day?

Back to Essen, autumn 2019. Our participants receive a letter with an indication of the address and a photo of the exact building. Even then, a lot of them seem to be somewhat confused. Is the appointment really here, in this place? Yes, the 7 Tesla MRI scanner that can produce super detailed images happens to be here. On the premises of an old coalmine, that is now a UNESCO world heritage site, as we’ve seen last week.

When everyone has arrived, we start with coffee. Long travels make thirsty, right? While we serve coffee, participants fill in a form with questions about their health. This is to make sure that their health is compliant with the German safety rules to undergo a 7 Tesla MRI scan.

When we enter the scanner room wearing shoes that contain metal parts, we can actually feel that this scanner has a very strong field strength: some shoes make you feel like wading through water! This strong field strength is why participants wear the green or blue clothes that surgeons wear in the operation theatre. A lot of ‘normal’ clothing has metal parts (such as zippers) or invisible metallic microfibers. This would give distortions on the data we gather or, even worse, can cause burns on their skin.

Going into the scanner is a special experience too. Because of the strong magnetic field, you may feel dizzy when moving into the scanner. One of our participants told afterwards: ‘I was really a bit confused: huh, I didn’t use drugs, what’s happening!?’ Compared to the 3 Tesla scanner in Nijmegen, where we also make an MRI scan, participants are placed quite a bit deeper into the bore of the scanner. Their whole body actually is inside the tunnel. So not having claustrophobia is also important. The participants spend the next 45 minutes in the dark, accompanied by loud rhythmic noise, until the scan is finished.

Time for lunch. During lunch, we transfer the data from the scanner to our hard drive, so that we can take it back to Nijmegen. Because the scanner registers the brain in such a detailed and precise manner, it generates a lot of data. The files that the scanner generates are so big that it lasts about half an hour to transfer the files!

Lunch is also a good time to have an informal chat about how the first day of testing – in Nijmegen – had been. During the first test day in Nijmegen, we also make an MRI. This MRI is made on a 3 Tesla scanner. In Nijmegen the scan consists of a part where you can just lie down and a part where you, still lying down, do some mental exercises. In that first part we measure brain anatomy and the activity of the brain at rest. During the mental exercises, we measure what happens in the brain while performing the exercise. Next to scanning we ask participants to fill in questionnaires, and do some tests to measure their IQ. We also do clinical interviews to assess the presence of ADHD symptoms and possible comorbid disorders.

After lunch we usually schedule one of the clinical interviews that are part of the project. When this is finished, it is time to head back to Nijmegen!

While collecting the data, we learn a lot about how people integrate ADHD in their lives. We feel honored by all these people telling us their life stories and helping us by participating in our project. Some participants tell us that they learned more about themselves or gained new insights. A compliment that makes us grateful.

Next week, we will explain why we drive all the way to Essen with our participants, and provide you with some information on the content of the project.

On a coalmine and an MRI scanner – Is it fun, participating in DELTA?

About two and a half years ago, Dr. Emma Sprooten started the DELTA project. In DELTA, acronym for Determinants of Long-term Trajectories in ADHD, she investigates factors that contribute to the difference in (severity of) symptoms and impairment in people who were diagnosed with ADHD as a child. Previously, these adults participated in a study called NeuroImage when they were a child. We asked them if they were willing to participate one more time in this study. In the coming three weeks, we will post three blogs about the project. This is blog 1.

2019. Somewhere in autumn. Trees have become all shades of brown, yellow and red. We pass forests while driving on a German highway, all the way from Holland. After a while, the landscape changes from the colored forest to an industrial town. It is grey and gloomy, packed with old-fashioned industry buildings. Soon, the navigation sends us into an even more surreal place. We find ourselves surrounded by rusty brown pipes in a place that feels like an abandoned factory. If we would not know better, we would begin to feel a bit worried about what could happen here… 

What brings us here in this desolate area? To put it short, a bunch of people who were diagnosed with ADHD during their childhood, and a hypermodern 7 Tesla MRI scanner. Over ten years ago, as children, our participants first came in together with their parents and siblings. They played games, were interviewed and got an MRI scan, that was presented to them as ‘ a picture of the inside of your brain’. Now, we are repeating these measurements for a third time, with an upgrade from 3 Tesla to 7 Tesla MRI, allowing even more detailed pictures of their brains.

For scientists it is extremely valuable that people are willing to take part in this research. This is one of the few cohorts in the world in which people with ADHD are followed up for such a long time. It makes it possible to investigate which factors influence the different clinical trajectories that ADHD can take:. We are now testing people for already a third time in the NeuroImage project, that started in 2009. The current follow-up is called the DELTA project. More on the content of the project in our third blog. 

Next week, we’ll give you a peek into what a participant experiences during a test day in Essen. 

If you cannot wait to get some information on NeuroImage, see:

For a peak into Zollverein, the world heritage site where the 7 Tesla scanner is located, see: The photo at the top of this post shows a detail of the coal mine at Zollverein.

From genes to driving schools: an Estonian program to reduce traffic accidents

Image by Netto Figueiredo from Pixabay

Driving is dangerous. 1.35 million people die from road accidents every year, according to the World Health Organization [1]. Young people who just obtained their driving license, and especially young men,  are at the highest risk for accidents. They are often seeking sensation, are more likely to take risks, and are more prone to take impulsive or thoughtless decisions while driving. To target this specific group, Estonian researchers have developed a training program for driving schools to make people aware of their impulsive tendencies.

Genetic predictors of traffic accidents

Interestingly, this Estonian research group that is led by professor Jaanus Harro specializes in genetics. Next to studying rats, Harro wanted to also investigate impulsive and aggressive behavior in humans. To measure this objectively outside of a laboratory setting they used data on traffic offences and accidents. Harro and his group found that a particular variation in the gene called 5-HTTLPR was associated with the number of speeding offences and traffic accidents [2]. People who have the short version of this variant are less likely to be caught for speeding or be involved in accidents, compared to those with the long variant.

The gene 5-HTTLPR is an important player in the serotonin system in the brain. Serotonin is a messenger molecule with many functions, one of them being the regulation of mood, impulsivity and aggression. Some people are more prone to act without thinking, or without considering the consequences, and this can partly be explained by genetics.

Reducing impulsive driving behavior

So should only people with the short version of 5-HTTLPR be allowed to drive? No, Harro and his team came up with something better: a program to reduce impulsive behavior on the road. They gave this to students who were learning to drive. In the training, students discussed their own impulsive tendencies, and ways to overcome these tendencies. There was also a control group that did not receive this extra lesson. Four years after obtaining their licenses, the group that received the training had been less involved in traffic violations and accidents than the control group. What’s more, those individuals with the long variant of 5-HTTLPR – so the ones who are more likely to be impulsive, based on this gene – benefited from the training the most.

For the driving schools the main implication of this experiment is that it is very beneficial to incorporate awareness training about impulsivity into driving lessons. Already eight driving schools in Estonia are providing the program to their students. The genetic findings however are mainly of interest to the researchers, who are hoping to gain a better understanding of impulsive and aggressive behavior. In addition to the serotonin-gene, they have found that genetic variations in the noradrenaline and dopamine system are also linked to traffic offenses and speeding, and to the effectiveness of the training [3, 4]. And just recently, they found that the neuropeptide orexin is linked to both aggression and to the prevalence of drunk driving and traffic accidents [5].

Beyond genetics

In addition to genes, other factors such as age, intelligence, and stressful life events influence the risk of offences and accidents as well, but we still know very little about how this works. That is why Harro and his team are now investigating the interactions between genes and environment. This research is part of the horizon2020 projects CoCA and Eat2beNICE. Ultimately, through a better understanding of our biology they hope to improve the way that people behave on the road, thereby reducing the number of accidents.

Meanwhile, Jaanus Harro travels to ministries and other governmental organizations in Estonia and Finland, to convince them to implement the training program on a national level, and to provide funds for further research. And in case you wonder about Harro’s own driving habits: although he acknowledges that he is quite impulsive, he assures us that he has learned to keep this under control while driving.

Jaanus Harro was recently interviewed by Science Business about this topic. Parts of this blogpost ar based on this interview. You can read the article here:


[1] (accessed 3 January 2020).

[2] Eensoo, Paaver, Vaht, Loit & Harro (2018). Risky driving and the persistent effect of a randomized intervention focusing on impulsivity: The role of the serotonin transporter promoter polymorphism. Accident Analysis and Prevention, 113, 19-24.

[3] Paaver, Eenso, Kaasik, Vaht, Mäestu & Harro (2013). Preventing risky driving: A novel and efficient brief intervention focusing on acknowledgement of personal risk factors. Accident Analysis and Prevention, 50, 430-437.

[4] Luht, Tokko, Eensoo, Vaht & Harro (2019). Efficacy of intervention at traffic schools reducing impulsive action, and association with candidate gene variants. Acta Neuropsychiatrica, 31, 159 – 166.

[5] Harro, Laas, Eensoo, Kurrikoff, Sakala, Vaht, Parik, Maëstu & Veidebaum (2019). Orexin/hypocretin receptor gene (HCRTR1) variation is associated with aggressive behaviour. Neuropharmacology, 156.


Mythbusters: artificial food colours and ADHD

When I was a kid, there was a boy in my class called Jeroen. At times I found him friendly and funny, but other times he would drive me insane with his hyperactive behaviour, jumping around and pulling my hair. Then one day, he told us that we wasn’t aloud to eat anything with artificial food colours anymore. This was supposed to reduce his hyperactivity. I was hopeful, but also sceptical if this would work.

Now that I’m involved in an international consortium investigating food and behaviour, I finally had the chance to learn about food colours and ADHD. Turns out, there is some truth to the claim, although it may only be true for some children, and it may not be specific to ADHD.

A shitty story

To better understand the effects of food on behaviour, we need to start at the end. Your poo can actually tell us a lot about the billions of microbes that live in your gut and help to digest the food you eat. For a long time, we didn’t know much about this micro-wildlife, until scientists developed techniques to analyse large amounts of DNA very quickly and cheaply. As every species has unique DNA, researchers can identify all the different species that live in your gut by analysing their DNA from poo. This helps us to better understand the many important roles that the gut bacteria play in your body, including your brain. For instance, certain bacteria produce neurotransmitters from digesting fibres. These neurotransmitters are important for the communication between brain cells.


What does this have to do with ADHD? ADHD is a neurodevelopmental condition, which means that the brain develops differently compared to typically developing children. This influences the functioning of the brain and hence people with ADHD have problems focussing their attention, controlling their impulses and regulating their activity. A disruption in the neurotransmitter system is thought to play a key role in this. While the main cause of ADHD is genetic, environmental factors are also known to increase the risk of the condition, such as smoking during pregnancy, toxins in the environment, and food allergies. Since recently, researchers are investigating the gut bacteria (aka the poo) to better understand how food allergies may trigger ADHD [1].

Food allergies

The microbes in the gut interact closely with the immune system. During development the immune system has to learn that many foreign substances in the intestines (i.e. food and bacteria) are good and should not be attacked. In a way, it has to learn not to overreact. And this is what happens with food allergies. The over-reaction of the immune system is harmful for both the gut environment and for the brain, especially if it happens very often. Hence, an allergic reaction to food colourings may trigger small changes in the brain that in turn may trigger behaviour such as hyperactivity. How this works exactly is still unknown.

Based on this theory, clinicians and nutritionists are now investigating if special diets can reduce ADHD symptoms [2]. In such a diet, a child is put on a very restrictive diet that eliminates any potentially allergenic substances. To see which food types trigger the symptoms, specific foods are introduced one by one. For some children, this really seems to work well and they can manage their symptoms by not eating certain foods the rest of their lives. The elegance of this method is that it is based on the individual. While one person may need to eliminate food colourings, for another it could be certain fruits, or cow’s milk.

Myth busted?

Do artificial food colours cause ADHD? This may be the case for some children. In others, other types of food may trigger ADHD symptoms. And in yet another group of children, their ADHD has nothing to do with food allergies. At the moment, the only way to find out is through trial and error. But only try this under supervision of trained nutritionists and clinicians!

Back to Jeroen. I don’t remember him getting less annoying. Perhaps he was not allergic to food colourings at all, and he should have tried the complete elimination diet or different medication. Or perhaps I was just an eight-year old girl allergic to all boys.


  1. Dam, S. et al. (2019) The Role of the Gut-Brain Axis in Attention-Deficit/Hyperactivity Disorder. Gastroenterol Clin N Am, 48, 407–431
  2. Ly, V. et al. (2017) Elimination diets’ efficacy and mechanisms in attention deficit hyperactivity disorder and autism spectrum disorder. European Child and Adolescent Psychiatry, 26, 1067-1079.

This blog was written by dr. Jeanette Mostert. She is a neuroscientist and science communicator. She is involved in the CoCA-project and Eat2beNICE project. In the latter she is learning all about the links between food and mental health. 

Food & mental health: the Eat2beNICE project

We all know that a healthy lifestyle is beneficial for our health. But many of us forget that eating healthy, exercising regularly and getting enough sleep is also important for good mental health. In the Eat2beNICE research project a large team of researchers is investigating the link between food and mental health, specifically impulsivity, compulsivity and aggression. To share this knowledge with the rest of the world, they work together with food consultant Sebastian Lege.

The Eat2beNICE project just released a video to explain what the research is about and why it’s important. In this video Sebastian Lege visits the project coordinator Alejandro Arias-Vasquez, en several other researchers in the consortium.

More information about the Eat2beNICE project can be found at






IMpACTnextgen: the next generation of IMpACT researchers


Near the beautiful castle in Örebro, Sweden 2018, we kicked off our new network of enthusiastic researchers working in the ADHD research field. This network consists of early and mid-career researchers who work on topics related to ADHD across the lifespan and have a link with one of the IMpACT (International Multicenter persistent ADHD CollaboraTion) projects.

Our network has the aim to unite the knowledge of the individual young researchers in the field of ADHD to boost the further development of our field. Furthermore, we aim to facilitate the exchange of students and offer them international experiences in our research labs. Our final aim is to have closer ties between the members. This way it will become easier to replicate research findings, collaborate and brainstorm with researchers that work on related topics.

In Frankfurt 2019 we decided to start working towards a first collaborative project. More about this will follow soon.

Our work can be followed here on ‘’ by our tag ‘impactnextgen’



If you want to join or have ideas, please contact any of us, or contact Martine Hoogman (chair)